Editing Distributed Ballot Based Protocol

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 6: Line 6:


==Outline==
==Outline==
In the beginning, the election authority prepares an N-qudit ballot state where the kth qudit of the state corresponds to <math> V_k</math>’s  blank ballot and sends the corresponding blank ballot to <math>V_k</math>  together with two option qudits, one for the “yes” and one for the “no” vote. then each voter decides on “yes” or “no” by appending the corresponding option qudit to the blank ballot and performing a 2-qudit measurement, then based on its result she performs a unitary correction and sends the 2-qudits ballot along with the measurement result back to the election authority. At the end of the election, the election authority applies a unitary operation on one of the qudits in the global state and another unitary operation on one of the qudits to find the number of yes votes.
In the beginning, the election authority prepares an N-qudit ballot state where the kth qudit of the state corresponds to V_k’s blank ballot and sends the corresponding blank ballot to V_k together with two option qudits, one for the “yes” and one for the “no” vote. then each voter decides on “yes” or “no” by appending the corresponding option qudit to the blank ballot and performing a 2-qudit measurement, then based on its result she performs a unitary correction and sends the 2-qudits ballot along with the measurement result back to the election authority. At the end of the election, the election authority applies a unitary operation on one of the qudits in the global state and another unitary operation on one of the qudits to find the number of yes votes.


==Notations==
==Notations==
Line 27: Line 27:


==Protocol Description==
==Protocol Description==
*'''Setup phase''':
# T prepares an N-qudit ballot state <math>|\Phi\rangle= \dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}|j\rangle ^{\otimes N}</math>. <p>The states <math> |j\rangle, j = 0,...,D-1,</math> form an orthonormal basis for the D-dimensional Hilbert space, and D > N. The k-th qudit of <math>\Phi</math> is <math>V_k</math>'s blank ballot.</p>
# T sends to <math>V_k</math> the corresponding blank ballot and two option qudits,for the "yes" and "no" option:<p><math> yes:|\psi(\theta_y)\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{ij\theta_y}|j\rangle</math></p>,<p> no:<math>|\psi(\theta_n)\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{ij\theta_n}|j\rangle</math>.</p> For <math> v\in \{y, n\}</math> we have <math>\theta_v = (2\pi l_v/D) + \delta</math>, where <math>l_v \in \{0,...,D- 1\}</math> and <math>\delta \in [0, 2\pi/D)</math>. Values <math>l_y</math> and <math>\delta</math> are chosen uniformly at random from their domain and <math>l_n</math> is chosen such that <math>N(l_y - l_n \text{ }mod\text{ } D)</math> < D.
*'''Casting phase''':
#Each <math>V_k</math> appends the corresponding option qudit to the blank ballot and performs a 2-qudit measurement <math> R =\sum^{D-1}_{r=0}rP_r</math> where <math> P_r=\sum_{j=0}^{D-1}|j+r\rangle\langle j+r | \otimes |j\rangle \langle j|.</math><p> According to the result <math>r_k, V_k</math> performs a unitary correction <math>U_{r_k} = I \otimes \sum_{j=0}^{D-1}|j+r_k\rangle \langle j |</math> and sends the 2-qudits ballot and <math>r_k</math> back to T
*'''Tally phase''':
#The global state of the system is: <math> \dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}\Pi^{N}_{k=1}\alpha_{j,r_k}|j\rangle^{\otimes 2N}</math> where , <math display="block">\alpha_{j,r_k}=
\begin{cases}
e^{i(D+j-r_k)\theta^{k}_{v}},\text{ }0 \leq j \leq r_k -1,\\
e^{i(j-r_k)\theta^{k}_{v}}\text{ }r_k \leq j \leq D -1
\end{cases}
</math><p>For every k, T applies <math> W_k=\sum_{j=0}^{r_k-1}e^{-iD\delta}|j\rangle|\langle j|+\sum_{j=r_k}^{D-1}|j\rangle|\langle j| </math> on one of the qudits in the global state.</p>
# By applying the unitary operator <math> \sum_{j=0}^{D-1}e^{-ijN\theta_n}|j\rangle \langle j|</math>on one of the qudits we have <math>|\phi_q\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{2\pi ijq/D}|j\rangle^{\otimes 2N}</math> where <math>q=m(l_y-l_n)</math>. with the corresponding measurement, T retrieves q and uses values <math>l_y,l_n</math> to compute m.


==Further Information==
==Further Information==


<div style='text-align: right;'>''*contributed by Sara Sarfaraz''</div>
<div style='text-align: right;'>''*contributed by Sara Sarfaraz''</div>
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)