Editing Device-Independent Quantum Key Distribution

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
This [https://arxiv.org/abs/1811.07983 example protocol] implements the task of [[Quantum Key Distribution]] (QKD) without relying on any particular description of the underlying hardware system. The protocol enables two parties to establish a classical secret key by distributing an entangled quantum state and checking for the violation of a [[Bell inequality]] in order to certify the security. The output of the protocol is a classical secret key which is completely unknown to any third party, namely an eavesdropper.


'''Tags:''' [[:Category:Two Party Protocols|Two Party]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]],[[Quantum Key Distribution]], [[BB84 Quantum Key Distribution|BB84 QKD]], [[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Entanglement Distribution Network stage]]
A device-independent quantum key distribution protocol implements the task of [[Quantum Key Distribution]] (QKD) without relying on any particular description of the underlying system. The protocol enables two parties, Alice and Bob, to establish a classical secret key by distributing an entangled quantum state and checking for the violation of a [[Bell inequality]] in order to certify the security. The output of the protocol is a classical secret key which is completely unknown to any third party, namely an eavesdropper.
 
'''Tags:''' [[:Category:Two Party Protocols|Two Party]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]],[[Quantum Key Distribution]], [[BB84 Quantum Key Distribution|BB84 QKD]], [[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Entanglement Distribution Network Stage]]
==Assumptions==
==Assumptions==
* '''Network:''' we assume the existence of an authenticated public classical channel between Alice and Bob.
* '''Network:''' we assume the existence of an authenticated public classical channel between Alice and Bob.
Line 15: Line 16:
* In the final phase, Alice and Bob perform [[privacy amplification]], where the not fully secure <math>n</math>-bit strings are mapped into smaller strings <math>K_A</math> and <math>K_B</math>, which represents the final keys of Alice and Bob respectively.
* In the final phase, Alice and Bob perform [[privacy amplification]], where the not fully secure <math>n</math>-bit strings are mapped into smaller strings <math>K_A</math> and <math>K_B</math>, which represents the final keys of Alice and Bob respectively.


==Requirements ==
==Hardware Requirements ==
*'''Network Stage:''' [[:Category:Entanglement Distribution Network stage| Entanglement Distribution]][[Category:Entanglement Distribution Network stage]]
*'''Network Stage:''' [[:Category: Entanglement Distribution Network Stage|Entanglement Distribution]]
*'''Relevant Network Parameters:''' transmission error <math>\epsilon_T</math>, measurement error <math>\epsilon_M</math> (see [[:Category:Entanglement Distribution Network stage| Entanglement Distribution]]).
*'''Relevant Network Parameters:''' transmission error <math>\epsilon_T</math>, measurement error <math>\epsilon_M</math> (see [[:Category: Entanglement Distribution Network Stage|Entanglement Distribution]]).
*'''Benchmark values:'''
*'''Benchmark values:'''
** Minimum number of rounds ranging from <math>\mathcal{O}(10^6)</math> to <math>\mathcal{O}(10^{12})</math> depending on the network parameters<math>\epsilon_T,\epsilon_M</math>, for commonly used security parameters.
** Minimum number of rounds ranging from <math>\mathcal{O}(10^6)</math> to <math>\mathcal{O}(10^{12})</math> depending on the network parameters<math>\epsilon_T,\epsilon_M</math>, for commonly used security parameters.
Line 23: Line 24:
* Distribution of Bell pairs, and measurement in three different bases (two basis on Alice's side and three basis on Bob's side).
* Distribution of Bell pairs, and measurement in three different bases (two basis on Alice's side and three basis on Bob's side).
* Requires [[random number generator]].
* Requires [[random number generator]].
==Knowledge Graph==
{{graph}}


==Notation==
==Notation==
* <math>n</math> expected number of rounds
* <math>n</math> expected number of rounds
* The total number of rounds <math>n</math> is divided in to <math>m</math> blocks of size upper-bounded by <math>s_{\max}</math>.
* The total number of rounds <math>n</math> is divided in to <math>m</math> blocks of size upper-bounded by <math>s_{\max}</math>, the maximum length of a block of rounds.
* <math>l</math> final key length  
* <math>l</math> final key length  
* <math>\gamma</math> fraction of test rounds  
* <math>\gamma</math> fraction of test rounds  
Line 44: Line 41:
* <math>\epsilon_{PA}</math> error probability of the privacy amplification protocol  
* <math>\epsilon_{PA}</math> error probability of the privacy amplification protocol  
* <math>\mbox{leak}_{EC}</math> leakage in the error correction protocol
* <math>\mbox{leak}_{EC}</math> leakage in the error correction protocol
* For any registers <math>(Z_i)_{i \in \mathbb{N}}</math>, we use <math>Z_j^k,\ (j\leq k)</math> as a shorthand notation for the string <math>Z_j,\ldots,Z_k</math>.
* For any registers <math>(Z_i)_{i \in \mathbb{N}}</math>, we use <math>Z_j^k,\ (j\leqj)</math> is
a shorthand notation for the string <math>Z_j,\ldots,Z_k</math>.


==Properties==
==Properties==
Line 63: Line 61:
*<math>\nu_1=2 \Big(\log 7 +\left\lceil\frac{|h'(\omega_{exp}+\delta_{est})|}{1-(1-\gamma)^{s_{\max}}}\right\rceil\Big)\sqrt{1-2\log\epsilon_s}</math>
*<math>\nu_1=2 \Big(\log 7 +\left\lceil\frac{|h'(\omega_{exp}+\delta_{est})|}{1-(1-\gamma)^{s_{\max}}}\right\rceil\Big)\sqrt{1-2\log\epsilon_s}</math>


==Protocol Description==
==Pseudocode==
*'''Input: '''<math> n, \delta</math></br>
*'''Input: '''<math> n, \delta</math></br>
*'''Output: '''<math> K_A, K_B</math></br>
*'''Output: '''<math> K_A, K_B</math></br>
Line 90: Line 88:
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i\neq X_i\cdot Y_i</math> '''then''' <math>C_i=0</math>
##'''If''' <math>T_i=1</math>  and <math>A_i\oplus B_i\neq X_i\cdot Y_i</math> '''then''' <math>C_i=0</math>
## '''If''' <math>T_i=0</math>  '''then''' <math>C_i=\bot</math>
## '''If''' <math>T_i=0</math>  '''then''' <math>C_i=\bot</math>
# Bob aborts '''If''' <math>\sum_j C_{j}<m\times (\omega_{exp}-\delta_{est})(1-(1-\gamma)^{s_{\max}})</math>, i.e., if they do not achieve the expected violation.  
# He aborts '''If''' <math>\sum_j C_{j}<m\times (\omega_{exp}-\delta_{est})(1-(1-\gamma)^{s_{\max}})</math>, i.e., if they do not achieve the expected violation.  
''For the summation in 3.2 we use the convention that <math>\forall x\in \{0,1,\bot\},\ x+\bot=\bot+x=x</math>, that is <math>\bot</math> acts as <math>0</math> with respect to the addition.''
''For the summation in 3.2 we use the convention that <math>\forall x\in \{0,1,\bot\},\ x+\bot=\bot+x=x</math>, that is <math>\bot</math> acts as <math>0</math> with respect to the addition.''


Line 107: Line 105:
#[https://doi.org/10.1007/3-540-48285-7_35 Secret-Key Reconciliation by Public Discussion]
#[https://doi.org/10.1007/3-540-48285-7_35 Secret-Key Reconciliation by Public Discussion]
#[https://arxiv.org/abs/quant-ph/0512258 Security of Quantum Key Distribution]
#[https://arxiv.org/abs/quant-ph/0512258 Security of Quantum Key Distribution]
#[https://arxiv.org/abs/1811.07983.pdf Towards a realization of device-independent quantum key distribution]
#[https://arxiv.org/pdf/1811.07983.pdf Towards a realization of device-independent quantum key distribution]


<div style='text-align: right;'>''contributed by Gláucia Murta''</div>
<div style='text-align: right;'>''contributed by Gláucia Murta''</div>
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: