Device-Independent Oblivious Transfer: Difference between revisions

no edit summary
mNo edit summary
No edit summary
Line 97: Line 97:
==Properties==
==Properties==
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->
 
* <math>\epsilon</math>-'''Receiver security:''' If <math>R</math> is honest, then for any <math>\tilde{S}</math>, there exist random variables <math>S_0^{\prime}, S_1^{\prime}</math> such that Pr[<math>Y = S_c^{\prime}] \geq 1 - \epsilon</math> and <math>D(\rho_{c,S_0^{\prime}, S_1^{\prime},\tilde{S}}, \rho_c \otimes \rho_{S_0^{\prime}, S_1^{\prime},\tilde{S}}) \leq \epsilon</math>
 
*: Protocol 3 is perfectly receiver secure, i.e. <math>\epsilon</math> = 0
==Further Information==
* <math>\epsilon</math>-'''Sender security:''' If S is honest, then for any <math>\tilde{R}</math>, there exist a random variable <math>c^{\prime}</math> such that <math>D(\rho_{S_{1-c^{\prime}},S_{c^{\prime}},c^{\prime},\tilde{R}}, \frac{1}{2^l}I \otimes \rho_{S_{c^{\prime}},c^{\prime},\tilde{R}}) \leq \epsilon</math>
<!-- theoretical and experimental papers including requirements, security proof (important), which protocol does it implement, benchmark values... -->
*: Protocol 3 is <math>\epsilon^{\prime}</math>-sender secure, where <math>\epsilon^{\prime}</math> can be made negligible in certain conditions.


==References==
==References==
 
* The protocol and its security proofs can be found in [https://arxiv.org/abs/2111.08595 Broadbent and Yuen(2021)]
<div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div>
<div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div>
Write
33

edits