Editing Certified infinite randomness expansion

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 112: Line 112:
* initialise array <math>R,r</math> of length <math>m</math>
* initialise array <math>R,r</math> of length <math>m</math>
* For <math>i\leftarrow1</math> to <math>m</math>:
* For <math>i\leftarrow1</math> to <math>m</math>:
** set <math>R[i]=True</math> with probability <math>1/l</math> (seed with <math>t^{(1)}</math>)
** set <math>R[i]=True</math> with probability <math>1/l</math> (seed with $t^{(1)}</math>)
* For <math>i\leftarrow1</math> to <math>m</math> do initialise array <math>r_i</math> of length <math>\kappa</math>
* For <math>i\leftarrow1</math> to <math>m</math> do initialise array <math>r_i</math> of length <math>\kappa</math>
** If <math>R[i]</math>:
** If <math>R[i]</math>:
*** For <math>j\leftarrow1</math> to <math>\kappa</math>:
*** For <math>j\leftarrow1</math> to <math>\kappa</math>:
**** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
**** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
**** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in basis <math>A_{bases}[0]</math>
**** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in basis <math>\textrm{A\_bases}[0]</math>
**** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in basis <math>B_{bases}[0]</math>
**** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in basis <math>\textrm{A\_bases}[0]</math>
**** If <math>a\neq b</math>:
**** If <math>a\neq b</math>:
***** <math>\textbf{abort}</math>
***** <math>\textbf{abort}</math>
Line 126: Line 126:
*** <math>x_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math>
*** <math>x_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math>
*** <math>y_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math>
*** <math>y_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math>
*** set device <math>D_1</math> to <math>A_{bases}[x_i]</math>
*** set device <math>D_1</math> to <math>\textrm{A\_bases}[x_i]</math>
*** set device <math>D_2</math> to <math>A_{bases}[0],B_{bases}[0]\}[y_i]</math>
*** set device <math>D_2</math> to <math>\{\textrm{A\_bases}[0],\textrm{B\_bases}[0]\}[y_i]</math>
*** For <math>j\leftarrow1</math> to <math>\kappa</math>:
*** For <math>j\leftarrow1</ma}th> to <math>\kappa</math>:
**** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
**** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
**** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in set basis <math>A_{bases}[0]</math>
**** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in set basis <math>\textrm{A\_bases}[0]</math>
**** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in set basis <math>B_{bases}[0]</math>
**** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in set basis <math>\textrm{A\_bases}[0]</math>
**** <math>r_i[j]\leftarrow(a_j,b_j)</math>
**** <math>r_i[j]\leftarrow(a_j,b_j)</math>
**** <math>d\leftarrow d+(a_j\oplus b_j)/\kappa</math>
**** <math>d\leftarrow d+(a_j\oplus b_j)/\kappa</math>
Line 150: Line 150:


'''Output''': <math>u</math>
'''Output''': <math>u</math>
* split <math>t</math> evenly into <math>(t^{(1)},t^{(2)})</math>
* split <math>t$ evenly into <math>(t^{(1)},t^{(2)})</math>
* <math>n\leftarrow\big\lfloor\frac{|t^{(1)}|}{2}\big\rfloor</math>
* <math>n\leftarrow\big\lfloor\frac{|t^{(1)}|}{2}\big\rfloor</math>
* initialise arrays <math>r</math>, <math>s</math> of length <math>n</math>
* initialise arrays <math>r$, <math>s</math> of length <math>n</math>
* <math>w\leftarrow0</math>
* <math>w\leftarrow0$
* For <math>i\leftarrow1</math> to <math>n</math>:
* For <math>i\leftarrow1$ to <math>n</math>:
** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math>
** <math>x_i\leftarrow t^{(1)}_i</math>
** <math>x_i\leftarrow t^{(1)}_i</math>
** <math>y_i\leftarrow t^{(1)}_{i+1}</math>
** <math>y_i\leftarrow t^{(1)}_{i+1}</math>
** <math>a_i\leftarrow</math> measurement result from device <math>D_1</math> in basis <math>A_{bases}[x_i]</math>
** <math>a_i\leftarrow</math> measurement result from device <math>D_1$ in basis <math>\textrm{A\_bases}[x_i]</math>
** <math>b_i\leftarrow</math> measurement result from device <math>D_2</math> in basis <math>B_{bases}[y_i]</math>
** <math>b_i\leftarrow</math> measurement result from device <math>D_2$ in basis <math>\textrm{B\_bases}[y_i]</math>
** <math>s[i]\leftarrow(x_i,y_i)</math>
** <math>s[i]\leftarrow(x_i,y_i)</math>
** <math>r[i]\leftarrow(a_i,b_i)</math>
** <math>r[i]\leftarrow(a_i,b_i)</math>
Line 166: Line 166:
* If <math>w < n\cos^2(\pi/8)-\frac{1}{2\sqrt{2}}\sqrt{n\log{n}}</math>:
* If <math>w < n\cos^2(\pi/8)-\frac{1}{2\sqrt{2}}\sqrt{n\log{n}}</math>:
** \textbf{abort}
** \textbf{abort}
* <math>\gamma_1\leftarrow</math> random number in range <math>\{0...n/N-1\}</math> (seed using <math>t^{(2)}</math>)
* <math>\gamma_1\leftarrow</math> random number in range $\{0...n/N-1\}</math> (seed using $t^{(2)}</math>)
* <math>\gamma_2\leftarrow</math> random number in range <math>\{1...\sqrt{N}-1\}</math> (seed using <math>t^{(2)}</math>)
* <math>\gamma_2\leftarrow</math> random number in range $\{1...\sqrt{N}-1\}</math> (seed using $t^{(2)}</math>)
* initialise array <math>u</math> of length <math>\sqrt{N}</math>
* initialise array <math>u</math> of length <math>\sqrt{N}</math>
* For <math>i\leftarrow0</math> to <math>\sqrt{N}</math>:
* For <math>i\leftarrow0</math> to <math>\sqrt{N}</math>:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)