Editing Category:Quantum Memory Network Stage

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
[[Category: Network Stages]]
[[Category: Network Stages]]
In the fifth network stage, the end nodes have the capability to have a local memory which allows them to store quantum states. A crucial difference between this stage and the previous one is that we are now able to transfer unknown qubits from one network node to another for example, by performing deterministic [[Quantum Teleportation|teleportation]].  
In the fifth network stage, the end nodes have the capability to have a local memory which allows them to store quantum states. A crucial difference between this stage and the previous one is that we are now able to transfer unknown qubits from one network node to another for example, by performing deterministic [[Teleportation|teleportation]].  
==Applications==
==Applications==
This stage also implies the ability to perform entanglement distillation and generate multipartite entangled states from bipartite entanglement by exploiting the ability for local memory and control. It allows the implementation of much more complex protocols that require temporary storage of a quantum state during further quantum or classical communication. Interesting applications outside the domain of cryptography are exploiting long distance entanglement to extend the baseline of telescopes, for basic forms of leader election and for improving the synchronization of clocks.
This stage also implies the ability to perform entanglement distillation and generate multipartite entangled states from bipartite entanglement by exploiting the ability for local memory and control. It allows the implementation of much more complex protocols that require temporary storage of a quantum state during further quantum or classical communication. Interesting applications outside the domain of cryptography are exploiting long distance entanglement to extend the baseline of telescopes, for basic forms of leader election and for improving the synchronization of clocks.
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)