Editing BB84 Quantum Key Distribution

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 92: Line 92:
'''4.''' Error correction
'''4.''' Error correction


''<math>C(\cdot,\cdot)</math> is an error correction subroutine (see [[BB84 Quantum Key Distribution #References| [9]]]) determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
''<math>C(\cdot,\cdot)</math> is an error correction subroutine (see [[BB84 Quantum Key Distribution #References| [11]]]) determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
#Both Alice and Bob run <math>C(A_1^{n'},B_1^{n'})</math>''.  
#Both Alice and Bob run <math>C(A_1^{n'},B_1^{n'})</math>''.  
#Bob obtains <math>\tilde{B}_1^{n'}</math>
#Bob obtains <math>\tilde{B}_1^{n'}</math>
'''5.''' Privacy amplification
'''5.''' Privacy amplification


''<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine (see [[BB84 Quantum Key Distribution #References| [10]]]) determined by the size <math>\ell</math>, computed from equation for key length <math>\ell</math> (see [[Quantum Key Distribution#Properties|Properties]]), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>''
''<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from equation for key length <math>\ell</math> (see [[Quantum Key Distribution#Properties|Properties]]), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>''
#Alice and Bob run <math>PA(A_1^{n'},\tilde{B}_1^{n'})</math> and obtain secret keys <math>K_A, K_B</math>;
#Alice and Bob run <math>PA(A_1^{n'},\tilde{B}_1^{n'})</math> and obtain secret keys <math>K_A, K_B</math>;


Line 110: Line 110:
# Sifting: the BB84 protocol can also be described in a symmetric way. This means that the inputs <math>0</math> and <math>1</math> are chosen with the same probability. In that case only <math>1/2</math> of the generated bits are discarded during the sifting process. Indeed, in the symmetric protocol, Alice and Bob measure in the same basis in about half of the rounds.  
# Sifting: the BB84 protocol can also be described in a symmetric way. This means that the inputs <math>0</math> and <math>1</math> are chosen with the same probability. In that case only <math>1/2</math> of the generated bits are discarded during the sifting process. Indeed, in the symmetric protocol, Alice and Bob measure in the same basis in about half of the rounds.  
# [https://dl.acm.org/citation.cfm?id=1058094 LCA05] the asymmetric protocol was introduced to make this more efficient protocol presented in this article.
# [https://dl.acm.org/citation.cfm?id=1058094 LCA05] the asymmetric protocol was introduced to make this more efficient protocol presented in this article.
# A post-processing of the key using 2-way classical communication, denoted [[Advantage distillation]], can increase the QBER tolerance up to <math>18.9\%</math> (3).
# A post-processing of the key using 2-way classical communication, denoted [[Advantage distillation]], can increase the QBER tolarance up to <math>18.9\%</math> (3).
# We remark that in [[BB84 Quantum Key Distribution#Pseudo Code|Pseudo Code]], the QBER in the <math>Z</math> basis is not estimated during the protocol. Instead Alice and Bob make use of a previous estimate for the value of <math>Q_Z</math> and the error correction step, Step 4 in the pseudo-code, will make sure that this estimation is correct. Indeed, if the real QBER is higher than the estimated value <math>Q_Z</math>, [[BB84 Quantum Key Distribution#Pseudo Code|Pseudo Code]] will abort in the Step 4 with very high probability.
# We remark that in [[BB84 Quantum Key Distribution#Pseudo Code|Pseudo Code]], the QBER in the <math>Z</math> basis is not estimated during the protocol. Instead Alice and Bob make use of a previous estimate for the value of <math>Q_Z</math> and the error correction step, Step 4 in the pseudo-code, will make sure that this estimation is correct. Indeed, if the real QBER is higher than the estimated value <math>Q_Z</math>, [[BB84 Quantum Key Distribution#Pseudo Code|Pseudo Code]] will abort in the Step 4 with very high probability.
# The BB84 can be equivalently implemented by distributing [[EPR pairs]] and Alice and Bob making measurements in the <math>Z</math> and <math>X</math> basis, however this required a [[entanglement distribution]] network stage.
# The BB84 can be equivalently implemented by distributing [[EPR pairs]] and Alice and Bob making measurements in the <math>Z</math> and <math>X</math> basis, however this required a [[entanglement distribution]] network stage.
#[https://doi.org/10.1007/3-540-48285-7_35 Secret-Key Reconciliation by Public Discussion]
 
#[https://arxiv.org/abs/quant-ph/0512258 Security of Quantum Key Distribution]
 


<div style='text-align: right;'>''contributed by Bas Dirke, Victoria Lipinska, Gláucia Murta and Jérémy Ribeiro''</div>
<div style='text-align: right;'>''contributed by Bas Dirke, Victoria Lipinska, Gláucia Murta and Jérémy Ribeiro''</div>
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: