Prepare-and-Measure Certified Deletion: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 3: Line 3:


<!-- Intro: brief description of the protocol -->
<!-- Intro: brief description of the protocol -->
This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement.
This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting.
<!--Tags: related pages or category -->
<!--Tags: related pages or category -->


==Assumptions==
==Requirements==
<!-- It describes the setting in which the protocol will be successful. -->
* '''Network Stage: ''' [[:Category:Prepare and Measure Network Stage| Prepare and Measure]]


==Outline==
==Outline==
Line 43: Line 43:
<!-- Add this part if the protocol is already in the graph -->
<!-- Add this part if the protocol is already in the graph -->
<!-- {{graph}} -->
<!-- {{graph}} -->
==Properties==
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->


==Protocol Description==
==Protocol Description==
Line 110: Line 107:
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. -->
<!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. -->


==Further Information==
==Properties==
<!-- theoretical and experimental papers including requirements, security proof (important), which protocol does it implement, benchmark values... -->
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->
This scheme has the following properties:
*'''Correctness''': The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability.
*'''Ciphertext Indistinguishability''': This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext <math>0^n</math>
*'''Certified Deletion Security''': After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion).
==References==
* The scheme along with its formal security definitions and their proofs can be found in [https://arxiv.org/abs/1910.03551 Broadbent & Islam (2019)]


==References==
<div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div>
Write
33

edits