Anonymous Conference Key Agreement using GHZ states: Difference between revisions

no edit summary
(Created page with "<!-- This is a comment. You can erase them or write below --> <!-- Intro: brief description of the protocol --> This [https://arxiv.org/abs/2007.07995 example protocol] achie...")
 
No edit summary
Line 2: Line 2:


<!-- Intro: brief description of the protocol -->
<!-- Intro: brief description of the protocol -->
This [https://arxiv.org/abs/2007.07995 example protocol] achieves the functionality of quantum conference key agreement anonymously. This protocol allows multiple parties in a quantum network to establish a shared secret key anonymously.
This [https://arxiv.org/abs/2007.07995 example protocol] achieves the functionality of quantum conference key agreement. This protocol allows multiple parties in a quantum network to establish a shared secret key anonymously.


<!--Tags: related pages or category -->
<!--Tags: related pages or category -->
Line 8: Line 8:
==Assumptions==
==Assumptions==
<!-- It describes the setting in which the protocol will be successful. -->
<!-- It describes the setting in which the protocol will be successful. -->
 
We require the following for this protocol:
# A source of n-party GHZ states
# Private randomness sources
# A randomness source that is not associated with any party
# A classical broadcasting channel
# Pairwise private communication channels


==Outline==
==Outline==
Line 44: Line 49:


===Protocol 2: Notification===
===Protocol 2: Notification===
''Input: '' Sender's choice of <math>m</math> receivers
''Goal: '' The <math>m</math> receivers get notified
''Requirements: '' Private pairwise classical communication channels and randomness sources
For agent <math>i = 1,...,n</math>:
# All agents <math>j \in \{1,...,n\}</math> do the following:
#* '''When agent <math>j</math> is the sender''': If <math>i</math> is not a receiver, the sender chooses <math>n</math> random bits <math>\{r_{j,k}^i\}_{k = 1}^n</math> such that <math>\bigoplus_{k=1}^n r_{j,k}^i = 0</math>. Otherwise, if <math>i</math> is a receiver, the sender chooses <math>n</math> random bits such that <math>\bigoplus_{k=1}^n r_{j,k}^i = 1</math>. The sender sends bit <math>r_{j,k}^i</math> to agent <math>k</math>
#* '''When agent <math>j</math> is not the sender''':  The agent chooses <math>n</math> random bits <math>\{r_{j,k}^i\}_{k = 1}^n</math> such that <math>\bigoplus_{k=1}^n r_{j,k}^i = 0</math> and sends bit <math>r_{j,k}^i</math> to agent <math>k</math>
# All agents <math>k \in \{1,...,n\}</math> receive <math>\{r_{j,k}^i\}_{j = 1}^n</math>, and compute <math>z_k^i = \bigoplus_{j=1}^n r_{j,k}^i</math> and send it to agent <math>i</math>
# Agent <math>i</math> takes the received <math>\{z_k^i\}_{k=1}^n</math> to compute <math>z^i = \bigoplus_{k=1}^nz_k^i</math>. If <math>z^i = 1</math>, they are thereby notified to be a designated receiver.
===Protocol 3: Anonymous Multiparty Entanglement===
===Protocol 3: Anonymous Multiparty Entanglement===
''Input: '' <math>n</math>-partite GHZ state <math>\frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})</math>
''Output: '' <math>(m+1)</math>-partite GHZ state <math>\frac{1}{\sqrt{2}}(|0\rangle^{\otimes (m+1)} + |1\rangle^{\otimes (m+1)})</math> shared between the sender and receivers
''Requirements: '' A broadcast channel; private randomness sources
# Sender and receivers draw a random bit each. Everyone else measures their qubits in the X-basis, yielding a measurement outcome bit <math>x_i</math>
# All parties broadcast their bits in a random order, or if possible, simultaneously.
# The sender applies a Z gate to their qubit if the parity of the non-participating parties' bits is odd.


===Protocol 4: Verification===
===Protocol 4: Verification===


''Input: '' A verifier V; a shared state between <math>k</math> parties
''Goal: '' Verification or rejection of the shared state as the GHZ<math>_k</math> state by V
''Requirements: '' Private randomness sources; a classical broadcasting channel
# Everyone but V draws a random bit <math>b_i</math> and measures in the X or Y basis if their bit equals 0 or 1 respectively, obtaining a measurement outcome <math>m_i</math>. V chooses both bits at random
# Everyone (including V) broadcasts <math>(b_i,m_i)</math>
# V resets her bit such that <math>\sum_ib_i = 0 (</math>mod <math>2)</math>. She measures in the X or Y basis if her bit equals 0 or 1 respectively, thereby also resetting her <math>m_i = m_v</math>
# V accepts the state if and only if <math>\sum_im_i = \frac{1}{2}\sum_ib_i (</math>mod <math>2)</math>
==Properties==
==Properties==
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->
<!-- important information on the protocol: parameters (threshold values), security claim, success probability... -->
Write
33

edits