Distributed Ballot Based Protocol: Difference between revisions

Line 38: Line 38:
e^{i(j-r_k)\theta^{k}_{v}}\text{ }r_k \leq j \leq D -1
e^{i(j-r_k)\theta^{k}_{v}}\text{ }r_k \leq j \leq D -1
\end{cases}
\end{cases}
</math>
</math><p>For every k, T applies <math> W_k=\sum_{j=0}^{r_k-1}e^{-iD\delta}|j\rangle|\langle j|+\sum_{j=r_k}^{D-1}|j\rangle|\langle j| </math> on one of the qudits in the global state.</p>
#For every k, T applies <math> W_k=\sum_{j=0}^{r_k-1}e^{-iD\delta}|j\rangle|langle j|+\sum_{j=r_k}^{D-1}|j\rangle|langle j| </math> on one of the qudits in the global state.
# By applying the unitary operator <math> \sum_{j=0}^{D-1}e^{-ijN\theta_n}|j\rangle \langle j|</math>on one of the qudits we have <math>|\phi_q\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{2\pi ijq/D}|j\rangle^{\otimes 2N}</math> where <math>q=m(l_y-l_n)</math>. with the corresponding measurement, T retrieves q and uses values <math>l_y,l_n</math> to compute m.
# By applying the unitary operator <math> \sum_{j=0}^{D-1}e^{-ijN\theta_n}|j\rangle \langle j|on one of the qudits we have <math>|\phi_q\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{2\pi ijq/D}|j\rangle^{\otimes 2N}</math> where <math>q=m(l_y-l_n). with the corresponding measurement, T retrieves q and uses values <math>l_y,l_n</math> to compute m.


==Further Information==
==Further Information==


<div style='text-align: right;'>''*contributed by Sara Sarfaraz''</div>
<div style='text-align: right;'>''*contributed by Sara Sarfaraz''</div>