Standard Randomised Benchmarking: Difference between revisions

Line 63: Line 63:
**** If <math>j == m+1</math>, apply inverse operator of previous operations
**** If <math>j == m+1</math>, apply inverse operator of previous operations
**** else, apply random operation C<math>_i</math>
**** else, apply random operation C<math>_i</math>
*** Thus, <math>S_{\mathbf{i_m}} = \bigotimes^{m+1}_{j+1} (\Lambda_{(i_j, j)} C_i)</math> and <math>i_{m+1}</math> is uniquely determined by <math>(i_1, ...,i_m)</math>
*** Thus, <math>S_{\mathbf{i_m}} = \bigotimes^{m+1}_{j=1} (\Lambda_{(i_j, j)} C_{i_j})</math> and <math>i_{m+1}</math> is uniquely determined by <math>(i_1, ...,i_m)</math>
*** Measure survival probability <math>Tr[E_{\psi}S_{\mathbf{i_m}}(\rho_\psi)]</math>
*** Measure survival probability <math>Tr[E_{\psi}S_{\mathbf{i_m}}(\rho_\psi)]</math>
** Estimate average survival probability <math>Tr[E_{\psi}S_{\mathbf{K_m}}(\rho_\psi)]</math> over all <math>K_m</math> sequences, where <math>S_{\mathbf{K_m}} = \frac{1}{K_m}\sum_{i_m} S_{i_m}</math>
** Estimate average survival probability <math>Tr[E_{\psi}S_{\mathbf{K_m}}(\rho_\psi)]</math> over all <math>K_m</math> sequences, where <math>S_{\mathbf{K_m}} = \frac{1}{K_m}\sum_{i_m} S_{i_m}</math>
Write
153

edits