Write, autoreview, editor, reviewer
3,129
edits
Line 1: | Line 1: | ||
==Functionality== | ==Functionality== | ||
If a person sends some information over an insecure channel (a dishonest/malicious party has access to the channel), what is the guarantee that the receiver on the other end will receive the same information as sent and not something which is modified or replaced by the dishonest party? Authentication of quantum channels/quantum states/quantum messages provides this guarantee to the users of a quantum communication line/ channel. The sender is called the suppliant (prover) and the receiver is called the authenticator. Note that, it is different from the functionality of [[Quantum Digital Signature|digital signatures]], a multi-party (more than two) protocol, which comes with additional properties (non-repudiation, unforgeability and transferability). Also, authenticating quantum states is possible but signing quantum states is impossible, as concluded in [[Authentication of Quantum Messages#References|(1)]]. | If a person sends some information over an insecure channel (a dishonest/malicious party has access to the channel), what is the guarantee that the receiver on the other end will receive the same information as sent and not something which is modified or replaced by the dishonest party? Authentication of quantum channels/quantum states/quantum messages provides this guarantee to the users of a quantum communication line/ channel. The sender is called the suppliant (prover) and the receiver is called the authenticator. Note that, it is different from the functionality of [[Quantum Digital Signature|digital signatures]], a multi-party (more than two) protocol, which comes with additional properties (non-repudiation, unforgeability and transferability). Also, authenticating quantum states is possible but signing quantum states is impossible, as concluded in [[Authentication of Quantum Messages#References|(1)]]. <br/> | ||
Unlike [[Authentication of Classical Messages|classical message authentication]], quantum messages authentication requires encryption. However, classical messages can be publicly readable (not encrypted) and yet authenticated. | Unlike [[Authentication of Classical Messages|classical message authentication]], quantum messages authentication requires encryption. However, classical messages can be publicly readable (not encrypted) and yet authenticated. | ||