Write
153
edits
(Created page with "Quantum gate set tomography is a robust and powerful method for self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. This meth...") |
No edit summary |
||
Line 1: | Line 1: | ||
Quantum gate set tomography is a robust and powerful method for self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. This method arose from the observation that Quantum Process tomography | Quantum gate set tomography is a robust and powerful method for self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. This method arose from the observation that [[Quantum Process tomography]] is inaccurate in the presence of state preparation and measurement errors. This procedure estimates the complete process matrices of Pauli transfer matrices for the gate set based on experimental data. | ||
'''Tags:''' [[Certification protocol]], [[Tomography]], [[Quantum process density matrix reconstruction]], [[Maximum Likelihood estimation]], [[Linear Inversion]], [[Gate set]] | '''Tags:''' [[Certification protocol]], [[Tomography]], [[Quantum process density matrix reconstruction]], [[Maximum Likelihood estimation]], [[Linear Inversion]], [[Gate set]] | ||
Line 87: | Line 87: | ||
==Protocol Description== | ==Protocol Description== | ||
'''Output''': Gate set, | '''Output''': Gate set, <math>G</math> | ||
* Initialize system to | * Initialize system to <math>|\rho\rangle</math> | ||
* For | * For <math>i = 1, 2, ..., N</math>: | ||
** For | ** For <math>j = 1, 2, ..., N</math>: | ||
*** For | *** For <math>k = 1, 2, ..., K</math>: | ||
**** For | **** For <math>r = 1, 2, ..., n</math> | ||
***** Apply gate sequence | ***** Apply gate sequence <math>F_i \circ G_k \circ F_j</math> | ||
***** Measure with POVM | ***** Measure with POVM <math>E</math>, get <math>n_r = 1</math> or <math>n_r = 0</math> | ||
**** | **** <math>m_{ijk} = \sum_{r=1}^{n} \frac{n_r}{n}</math> | ||
**** | **** <math>(\tilde{G}_k)_{ij} = p_{ijk} = m_{ijk} = \langle E|F_iG_kF_j|\rho\rangle</math> | ||
**** if | **** if <math>k==0</math> (null gate), <math>g_{ij} = \langle E|F_iF_j|\rho\rangle</math> | ||
** | ** <math>|\tilde{\rho}\rangle_i = \langle E|F_i|\rho\rangle</math> | ||
** | ** <math>B_{ij} = \langle i |F_j |\rho\rangle</math> | ||
* For Linear inversion: | * For Linear inversion: | ||
** Check that the Gram matrix | ** Check that the Gram matrix <math>g_{ij}</math> is non singular, so that it may be inverted | ||
** For the gate set, the estimate is | ** For the gate set, the estimate is <math>|\hat{\rho}\rangle = g^{-1}|\tilde{\rho}\rangle, \langle \hat{E}| = \langle \tilde{E} |, \hat{G_k} = g^{-1} \tilde{G}_k</math> | ||
** Apply gauge optimization, by minimizing: | ** Apply gauge optimization, by minimizing: | ||
<div style="text-align: center;"><math>\hat{B}^* = argmin_{\hat{B}}\sum^{K+1}_{k=1}Tr\{(\hat{G}_k - \hat{B}^{-1}T_k\hat{B})^T(\hat{G}_k - \hat{B}^{-1}T_k\hat{B})\} | |||
</math></div> | |||
** Final gate set is: <math>\hat{G}_k^{*} = \hat{B}^*\hat{G}_k(\hat{B}^*)^{-1}, |\hat{p}^*\rangle = \hat{B}^*|\hat{p}\rangle, \langle \hat{E}^*| = \langle \hat{E}|(\hat{B}^*)^{-1}</math> | |||
* For Maximum Likelihood Estimation: | * For Maximum Likelihood Estimation: | ||
** | ** <math>\hat{p}_{ijk} = \langle \hat{E}(\vec{t})|\hat{F}_i(\vec{t})\hat{G}_k(\vec{t})\hat{F}_j(\vec{t})|\hat{\rho}(\vec{t})\rangle</math> | ||
** Find the set of parameters | ** Find the set of parameters <math>\vec{t}</math> where <math>l(\hat{G})</math> is minimized. | ||
Minimize: | <div style="text-align: center;">Minimize: <math> | ||
l(\hat{G}) = \sum_{ijk} (m_{ijk} - \hat{p}_{ijk}(\vec{t}))^2 / \sigma^2_{ijk} | l(\hat{G}) = \sum_{ijk} (m_{ijk} - \hat{p}_{ijk}(\vec{t}))^2 / \sigma^2_{ijk} | ||
</math></div> | |||
** Minimize the above function with two different commonly used types of parameterisation of gates: | |||
*** Pauli Process Matrix Optimization problem: | |||
<div style="text-align: center;">Minimize: <math> | |||
l(\hat{G}) = \sum_{ijk} (m_{ijk} - \sum_{mnrstu}(\chi_{F_i})_{tu} (\chi_{G_k})_{rs} (\chi_{F_j})_{mn} Tr\{EP_t P_r P_m \rho P_n P_s P_u\} )^2 / \sigma^2_{ijk} | l(\hat{G}) = \sum_{ijk} (m_{ijk} - \sum_{mnrstu}(\chi_{F_i})_{tu} (\chi_{G_k})_{rs} (\chi_{F_j})_{mn} Tr\{EP_t P_r P_m \rho P_n P_s P_u\} )^2 / \sigma^2_{ijk} | ||
</math></div> | |||
<div style="text-align: center;">Subject to: <math> | |||
\sum_{mn}(\chi_G)_{mn}Tr\{P_mP_rP_n\} - \delta_{0r} = 0, (r = 1, .. , d^2), \forall G \in Gateset | \sum_{mn}(\chi_G)_{mn}Tr\{P_mP_rP_n\} - \delta_{0r} = 0, (r = 1, .. , d^2), \forall G \in Gateset | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
Tr\{\rho\} = 1 | Tr\{\rho\} = 1 | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
1 - E \geqslant 0 | 1 - E \geqslant 0 | ||
</math></div> | |||
*** Pauli Transfer Matrix Representation | |||
<div style="text-align: center;"> Minimize: <math> | |||
l(\hat{G}) = \sum_{ijk} (m_{ijk} - \langle \hat{E}(\vec{t})|\hat{R}_{F_i}(\vec{t})\hat{R}_{G_k}(\vec{t})\hat{R}_{F_j}(\vec{t})|\hat{\rho}(\vec{t})\rangle )^2 / \sigma^2_{ijk} | l(\hat{G}) = \sum_{ijk} (m_{ijk} - \langle \hat{E}(\vec{t})|\hat{R}_{F_i}(\vec{t})\hat{R}_{G_k}(\vec{t})\hat{R}_{F_j}(\vec{t})|\hat{\rho}(\vec{t})\rangle )^2 / \sigma^2_{ijk} | ||
</math></div> | |||
<div style="text-align: center;">Subject to: <math> | |||
\rho_G = \frac{1}{d^2} \sum_{i,j=1}^{d^2}(R_G)_{ij}P^T_G \otimes P_i \geqslant 0, \forall G \in Gateset | \rho_G = \frac{1}{d^2} \sum_{i,j=1}^{d^2}(R_G)_{ij}P^T_G \otimes P_i \geqslant 0, \forall G \in Gateset | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
(R_G)_{0i} = \delta_{0i}, \forall G \in Gateset | (R_G)_{0i} = \delta_{0i}, \forall G \in Gateset | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
(R_G)_{ij} \in [-1, 1], \forall G, i, j | (R_G)_{ij} \in [-1, 1], \forall G, i, j | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
Tr\{\rho\} = 1 | Tr\{\rho\} = 1 | ||
</math></div> | |||
<div style="text-align: center;"><math> | |||
1 - E \geqslant 0 | 1 - E \geqslant 0 | ||
</math></div> | |||
==Further Information== | |||
==Related Papers== | |||
* Daniel Greenbaum (2015) arXiv:1509.02921v1: Introduction to Quantum Gate Set Tomography |