GHZ-based Quantum Anonymous Transmission: Difference between revisions

No edit summary
Line 35: Line 35:
where <math>\mathcal{A}</math> is the subset of <math>t</math> adversaries among <math>n</math> nodes and <math>C</math> is the register that contains all classical and quantum side information accessible to the adversaries. Note that this implies that the protocol is also trace-less, since even if the adversary hijacks any <math>t\leq n-2</math> players and gains access to all of their classical and quantum information after the end of the protocol, she cannot learn the identities of <math>S</math> and <math>R</math>. For a formal argument see [[GHZ State based Quantum Anonymous Transmission#References|[6]]].
where <math>\mathcal{A}</math> is the subset of <math>t</math> adversaries among <math>n</math> nodes and <math>C</math> is the register that contains all classical and quantum side information accessible to the adversaries. Note that this implies that the protocol is also trace-less, since even if the adversary hijacks any <math>t\leq n-2</math> players and gains access to all of their classical and quantum information after the end of the protocol, she cannot learn the identities of <math>S</math> and <math>R</math>. For a formal argument see [[GHZ State based Quantum Anonymous Transmission#References|[6]]].


==Pseudocode==
==Protocol Description==
Receiver <math>R</math> is determined before the start of the protocol. <math>S</math> holds a message qubit <math>|\psi\rangle</math>.
Receiver <math>R</math> is determined before the start of the protocol. <math>S</math> holds a message qubit <math>|\psi\rangle</math>.
# Nodes run a collision detection protocol and determine a single sender <math>S</math>.
# Nodes run a collision detection protocol and determine a single sender <math>S</math>.
Write, autoreview, editor, reviewer
3,129

edits