Quantum Fingerprinting: Difference between revisions

Line 45: Line 45:


==Pseudocode==
==Pseudocode==
'''Stage 1''': Client's preparation</br>
'''Input''': <math>{x \in \{0, 1\}^n}, {y \in \{0, 1\}^n}</math> for first client and second client respectively. </br>
'''Input''': <math>{x \in \{0, 1\}^n}, {y \in \{0, 1\}^n}</math> for first client and second client respectively. </br>
'''Output''':  <math>|h_x\rangle</math>, <math>|h_y\rangle</math> sent to server </br>
'''Output''':  <math>|h_x\rangle</math>, <math>|h_y\rangle</math> sent to server
'''Stage 1''': Client's preparation
* First client prepares <math>|h_x\rangle</math> from <math>x</math>, <math>|h_x\rangle = \frac{1}{\sqrt{m}}\sum_{i=1}^{m} |i\rangle|E_i(x)\rangle</math>
* First client prepares <math>|h_x\rangle</math> from <math>x</math>, <math>|h_x\rangle = \frac{1}{\sqrt{m}}\sum_{i=1}^{m} |i\rangle|E_i(x)\rangle</math>
* Second client prepares <math>|h_y\rangle</math> from <math>y</math>, <math>|h_y\rangle = \frac{1}{\sqrt{m}}\sum_{i=1}^{m} |i\rangle|E_i(y)\rangle</math>
* Second client prepares <math>|h_y\rangle</math> from <math>y</math>, <math>|h_y\rangle = \frac{1}{\sqrt{m}}\sum_{i=1}^{m} |i\rangle|E_i(y)\rangle</math>
Line 54: Line 54:


'''Stage 2''': Server's test
'''Stage 2''': Server's test
'''Input''': <math>|h_x\rangle</math>, <math>|h_y\rangle</math> </br>
'''Output''':  SWAP test result
* Server prepares an ancilla qubit <math>|0\rangle</math> for SWAP test and starts with state <math>|0\rangle|h_x\rangle|h_y\rangle</math>
* Server prepares an ancilla qubit <math>|0\rangle</math> for SWAP test and starts with state <math>|0\rangle|h_x\rangle|h_y\rangle</math>
* Server applies gate <math>G = {(H\otimes I)(c-SWAP)(H\otimes I)}</math>, resulting in final state <math>\frac{1}{2}|0\rangle(|h_x\rangle|h_y\rangle + |h_y\rangle|h_x\rangle) + \frac{1}{2}|1\rangle(|h_x\rangle|h_y\rangle - |h_y\rangle|h_x\rangle)</math>
* Server applies gate <math>G = {(H\otimes I)(c-SWAP)(H\otimes I)}</math>, resulting in final state <math>\frac{1}{2}|0\rangle(|h_x\rangle|h_y\rangle + |h_y\rangle|h_x\rangle) + \frac{1}{2}|1\rangle(|h_x\rangle|h_y\rangle - |h_y\rangle|h_x\rangle)</math>
Write, autoreview, editor, reviewer
3,129

edits