Arbitrated Quantum Digital Signature: Difference between revisions

Line 69: Line 69:
<math>|V\rangle_{m, k_{pub},S} := Y^m H^{k_{pub}}|S\rangle_{k_{pri}, m}</math>
<math>|V\rangle_{m, k_{pub},S} := Y^m H^{k_{pub}}|S\rangle_{k_{pri}, m}</math>
This state is also expressed as <math>\beta|\phi\rangle_{k_{pri}\oplus s, t\oplus m}</math> where <math>\beta \in \{1, -1, \iota, -\iota\}</math>
This state is also expressed as <math>\beta|\phi\rangle_{k_{pri}\oplus s, t\oplus m}</math> where <math>\beta \in \{1, -1, \iota, -\iota\}</math>
* <math>|Q\rangle</math>: Result of Verifier's measurement of <math>|V\rangle_{m, k_{pub},S}</math>.
* <math>Q</math>: Classical bit string denoted as <math>Q \in \{00, 01, 10, 11\}^n</math>. It is proven that <math>P=Q</math>.
* <math>Q</math>: Classical bit string denoted as <math>Q \in \{00, 01, 10, 11\}^n</math>. It is proven that <math>P=Q</math>.
*<math>g(Q)</math>: g is a classical function which when takes classical 2n bit string Q, gives seller's random string t as output. This function can be calculated.
*<math>g(Q)</math>: g is a classical function which when takes classical 2n bit string Q, gives seller's random string t as output. This function can be calculated.
Write, autoreview, editor, reviewer
3,129

edits