Prepare-and-Send Quantum Fully Homomorphic Encryption: Difference between revisions

m
mNo edit summary
Line 39: Line 39:
* <math>\Gamma_{pk_{i+1}}(\mathrm{sk_i})</math>, Gadget using <math>\mathrm{i_th}</math> secret key (<math>sk_i</math>) and encrypted by <math>\mathrm{(i + 1)_{th}}</math> public key (<math>\mathrm{pk_{i+1}}</math>)
* <math>\Gamma_{pk_{i+1}}(\mathrm{sk_i})</math>, Gadget using <math>\mathrm{i_th}</math> secret key (<math>sk_i</math>) and encrypted by <math>\mathrm{(i + 1)_{th}}</math> public key (<math>\mathrm{pk_{i+1}}</math>)
* <math>\sigma</math>, single qubit state
* <math>\sigma</math>, single qubit state
* <math>\rho=\ket{\psi}\bra{\psi}</math>, here <math>\rho</math> is the density matrix of quantum state |ψi
* <math>\rho=|\psi\rangle\langle\psi|</math>, here <math>\rho</math> is the density matrix of quantum state <math>|\psi\rangle</math>
* ρ, n-qubit input state, where n is determined by the Client
* ρ, n-qubit input state, where n is determined by the Client
* ρ(HE.Encpk(a)), a is encrypted with public key pk and is represented by density matrix ρ
* ρ(HE.Encpk(a)), a is encrypted with public key pk and is represented by density matrix ρ
Write, autoreview, editor, reviewer
3,129

edits