Prepare-and-Send Verifiable Quantum Fully Homomorphic Encryption: Difference between revisions

Line 45: Line 45:
* MAC: Message authentication code, MAC = (Tag, Ver)
* MAC: Message authentication code, MAC = (Tag, Ver)
* <math>pk_i, sk_i, evk_i</math>: <math>i_{th}</math> homomorphic key set generated from HE.KeyGen(). Public key for encryption, secret key for decryption, evaluation function key, respectively for given k, the security parameter.
* <math>pk_i, sk_i, evk_i</math>: <math>i_{th}</math> homomorphic key set generated from HE.KeyGen(). Public key for encryption, secret key for decryption, evaluation function key, respectively for given k, the security parameter.
* <math>v</math>:
* <math>\mu</math>:
* <math>m\times n</math>: Resource state size
* <math>\ket{\psi_P}</math>: <math>P(\ket{R}\otimes \ket{+}^{\otimes \frac{N}{3}} \otimes \ket{0}^{\otimes \frac{N}{3}})</math>, this is the <math>n</math>-qubit state left with the server which contains the trap qubits (<math>\ket{0}, \ket{+}</math>) and resource state.
* <math>\ket{R}: \frac{n}{3}</math>-qubit resource state
* <math>P: n</math>-qubit permutation, which keeps the order of qubits in <math>\ket{R}</math>
* <math>\ket{+}</math>:  <math>\frac{1}{\sqrt{2}} (\ket{0} +\ket{1})</math>
* q: <math>(x_1, ..., x_n, z_1, ..., z_n) \in \{0,1\}^{2n}</math>
* <math>\sigma_q: \bigotimes^n_{j=1}X^{x_j}_jZ^{z_j}_j</math>
* <math>\tilde{\sigma}</math>: ciphertext


==Pseudo Code==
==Pseudo Code==
Write, autoreview, editor, reviewer
3,129

edits