Measurement Device Independent Quantum Digital Signature (MDI-QDS): Difference between revisions

Line 37: Line 37:


<u>'''Stage 1'''</u> Distribution
<u>'''Stage 1'''</u> Distribution
*'''Input''' Key Length (L), Threshold values (s_a, s_v)
*'''Input''' Key Length (L), Threshold values (s_a, s_v), error threshold (E_tol), error rate parameter (e)
*'''Output''' Seller: <math>S_B^0,S_B^1,S_V^0,S_V^1</math> Buyer: <math>B^0,B^1</math>; Verifier: <math>V^0,V^1</math>
*'''Output''' Seller: <math>S_B^0,S_B^1,S_V^0,S_V^1</math> Buyer: <math>B^0,B^1</math>; Verifier: <math>V^0,V^1</math>
**'''Key Distribution:'''
**'''Key Distribution:'''
Line 86: Line 86:
####If (<math>|\Psi\rangle=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle))||(|Psi\rangle=\frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle)</math>) '''then''' <math>R^i(k)=b</math>
####If (<math>|\Psi\rangle=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle))||(|Psi\rangle=\frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle)</math>) '''then''' <math>R^i(k)=b</math>
####If (<math>|\Psi\rangle=\frac{1}{\sqrt{2}}(|++\rangle-|--\rangle))||(|Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|+-\rangle)</math>) '''then''' <math>R^i(k)=\tilde b</math>
####If (<math>|\Psi\rangle=\frac{1}{\sqrt{2}}(|++\rangle-|--\rangle))||(|Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|+-\rangle)</math>) '''then''' <math>R^i(k)=\tilde b</math>
*
*Error rate calculation
#Seller and Buyer choose <math>I\subset_R\{1,2,...,L\}, |I|=e</math>
#<math>\forall i\epsilon I</math>, E_k=\frac{1}{e}\sum_i(A^k_R(i)\oplusR^k(i))
#If E_k>E_tol '''then''' abort '''else''' success


==Further Information==
==Further Information==
Write, autoreview, editor, reviewer
3,129

edits