Verifiable Quantum Anonymous Transmission: Difference between revisions

Line 59: Line 59:


====<span style="font-variant:small-caps"><math>\epsilon</math>-anonymous transmission of a quantum message</span>====
====<span style="font-variant:small-caps"><math>\epsilon</math>-anonymous transmission of a quantum message</span>====
\noindent ''{Input}: Security parameter <math>q<math>. \\
''{Goal}: <math>\mathcal{S}</math> sends message qubit <math>\ket{\psi}</math> to <math>\mathcal{R}</math> with <math>\epsilon</math>-anonymity.


''Input'': Security parameter <math>q</math>.


# {\bf Receiver notification}: \\
''Goal'': <math>\mathcal{S}</math> sends message qubit <math>|\psi\rangle</math> to <math>\mathcal{R}</math> with <math>\epsilon</math>-anonymity.  
Run <span style="font-variant:small-caps">Notification</span> for <math>\mathcal{S}</math> to notify <math>\mathcal{R}</math> as the Receiver.


# {\bf Distribution of state}: \\
A source (who may be untrusted) generates a state <math>|\Psi\rangle<math> and distributes it to the players (in the ideal case, <math>|\Psi\rangle</math> is the GHZ state).


# {\bf <math>\mathcal{S}<\math> anonymously chooses verification or anonymous transmission}:  
# ''' Receiver notification ''': Run <span style="font-variant:small-caps">Notification</span> for <math>\mathcal{S}</math> to notify <math>\mathcal{R}</math> as the Receiver.
# ''' Distribution of state ''': A source (who may be untrusted) generates a state <math>|\Psi\rangle</math> and distributes it to the players (in the ideal case, <math>|\Psi\rangle</math> is the GHZ state).
# ''' <math>\mathcal{S}</math> anonymously chooses verification or anonymous transmission ''':  
## Run <span style="font-variant:small-caps">RandomBit</span>, with the input of <math>\mathcal{S}</math> chosen as follows: she flips <math>q</math> fair classical coins, and if all coins are heads, she inputs 0, else she inputs 1. Let the outcome be <math>x</math>.
## Run <span style="font-variant:small-caps">RandomBit</span>, with the input of <math>\mathcal{S}</math> chosen as follows: she flips <math>q</math> fair classical coins, and if all coins are heads, she inputs 0, else she inputs 1. Let the outcome be <math>x</math>.
## If <math>x=1</math>,
## If <math>x=1</math>,
### Run <span style="font-variant:small-caps">RandomBit</span> <math>\log_2 n</math> times, with the input of <math>\mathcal{S}</math> chosen according to the uniform random distribution. Let the outcome be <math>v</math>.
### Run <span style="font-variant:small-caps">RandomBit</span> <math>\log_2 n</math> times, with the input of <math>\mathcal{S}</math> chosen according to the uniform random distribution. Let the outcome be <math>v</math>.
### Run <span style="font-variant:small-caps">Verification</span> with player <math>v</math> as the Verifier. If she accepts the outcome of the test, return to step 2, otherwise abort.
### Run <span style="font-variant:small-caps">Verification</span> with player <math>v</math> as the Verifier. If she accepts the outcome of the test, return to step 2, otherwise abort. Else if <math>x=0</math>, run <span style="font-variant:small-caps">Anonymous Transmission</span>.
 
Else if <math>x=0</math>, run <span style="font-variant:small-caps">Anonymous Transmission</span>.


If at any point in the protocol, <math>\mathcal{S}</math> realises someone does not follow the protocol, she stops behaving like the Sender and behaves as any player.
If at any point in the protocol, <math>\mathcal{S}</math> realises someone does not follow the protocol, she stops behaving like the Sender and behaves as any player.
Line 83: Line 79:


====<span style="font-variant:small-caps">Parity</span>====
====<span style="font-variant:small-caps">Parity</span>====
\noindent ''{Input}: <math>\{ x_i \}_{i=1}^n</math>. \\
 
''{Goal}: Each player gets <math>y_i = \bigoplus_{i=1}^n x_i</math>.
''Input'': <math>\{ x_i \}_{i=1}^n</math>.
 
''Goal'': Each player gets <math>y_i = \bigoplus_{i=1}^n x_i</math>.
 
# Every player <math>i</math> chooses random bits <math>\{r_i^j \}_{j=1}^n</math> such that <math>\bigoplus_{j=1}^n r_i^j = x_i</math>.  
# Every player <math>i</math> chooses random bits <math>\{r_i^j \}_{j=1}^n</math> such that <math>\bigoplus_{j=1}^n r_i^j = x_i</math>.  
# Every player <math>i</math> sends their <math>j</math>th bit <math>r_i^j</math> to player <math>j</math> (<math>j</math> can equal <math>i</math>).  
# Every player <math>i</math> sends their <math>j</math>th bit <math>r_i^j</math> to player <math>j</math> (<math>j</math> can equal <math>i</math>).  
Line 91: Line 90:


====<span style="font-variant:small-caps">LogicalOR</span>====
====<span style="font-variant:small-caps">LogicalOR</span>====
\noindent ''{Input}: <math>\{ x_i \}_{i=1}^n</math>, security parameter <math>q</math>. \\
 
''{Goal}: Each player gets <math>y_i = \bigvee_{i=1}^n x_i</math>.
''Input'': <math>\{ x_i \}_{i=1}^n</math>, security parameter <math>q</math>.
 
''Goal'': Each player gets <math>y_i = \bigvee_{i=1}^n x_i</math>.
 
# The players agree on <math>n</math> orderings, with each ordering having a different last participant.  
# The players agree on <math>n</math> orderings, with each ordering having a different last participant.  
# For each ordering:
# For each ordering:
Line 100: Line 102:


====<span style="font-variant:small-caps">Notification</span>====
====<span style="font-variant:small-caps">Notification</span>====
\noindent ''{Input}: Security parameter <math>q</math>, <math>\mathcal{S}</math>'s choice of <math>\mathcal{R}</math> is player <math>r</math>. \\
 
''{Goal}: <math>\mathcal{S}</math> notifies <math>\mathcal{R}</math>. \\
''Input'': Security parameter <math>q</math>, <math>\mathcal{S}</math>'s choice of <math>\mathcal{R}</math> is player <math>r</math>.
 
''Goal'': <math>\mathcal{S}</math> notifies <math>\mathcal{R}</math>.
 
For each player <math>i</math>:
For each player <math>i</math>:
# For each player <math>i</math>:
# For each player <math>i</math>:
Line 110: Line 115:


====<span style="font-variant:small-caps">RandomBit</span>====
====<span style="font-variant:small-caps">RandomBit</span>====
\noindent ''{Input:} All: parameter <math>q<math>. <math>\mathcal{S}<math>: distribution <math>D<math>. \\
 
''{Goal:} <math>\mathcal{S}<math> chooses a bit according to <math>D<math>.
''Input'': All: parameter <math>q</math>. <math>\mathcal{S}</math>: distribution <math>D</math>.
# The players pick bits <math>\{ x_i \}_{i=1}^n<math> as follows: <math>\mathcal{S}<math> picks bit <math>x_i<math> to be 0 or 1 according to <math>D<math>; all other players pick <math>x_i = 0<math>.
 
# Run <span style="font-variant:small-caps">LogicalOR</span> with input <math>\{ x_i \}_{i=1}^n<math> and security parameter <math>q<math> and output its outcome.
''Goal'': <math>\mathcal{S}</math> chooses a bit according to <math>D</math>.
 
# The players pick bits <math>\{ x_i \}_{i=1}^n</math> as follows: <math>\mathcal{S}</math> picks bit <math>x_i</math> to be 0 or 1 according to <math>D</math>; all other players pick <math>x_i = 0</math>.
# Run <span style="font-variant:small-caps">LogicalOR</span> with input <math>\{ x_i \}_{i=1}^n</math> and security parameter <math>q</math> and output its outcome.


====<span style="font-variant:small-caps">Verification</span>====
====<span style="font-variant:small-caps">Verification</span>====
\noindent ''{Input}: <math>n<math> players share state <math>\ket{\Psi}<math>. \\
 
''{Goal}: GHZ verification of <math>\ket{\Psi}<math> for <math>n-t<math> honest players.
''Input'': <math>n</math> players share state <math>|\Psi\rangle</math>.
# The Verifier generates random angles <math>\theta_j \in [0,\pi)<math> for all players including themselves (<math>j\in[n]<math>), such that <math>\sum_j \theta_j<math> is a multiple of <math>\pi<math>. The angles are then sent out to all the players in the network.  
 
# Player <math>j<math> measures in the basis <math>\{\ket{+_{\theta_j</span>,\ket{-_{\theta_j</span>\}=\{\frac{1}{\sqrt{2</span>(\ket{0}+e^{i\theta_j}\ket{1}),\frac{1}{\sqrt{2</span>(\ket{0}-e^{i\theta_j}\ket{1})\}<math>, and sends the outcome <math>Y_j=\{0,1\}<math> to the Verifier.  
''Goal'': GHZ verification of <math>|\Psi\rangle</math> for <math>n-t</math> honest players.
# The state passes the verification test if
 
<math>
# The Verifier generates random angles <math>\theta_j \in [0,\pi)</math> for all players including themselves (<math>j\in[n]</math>), such that <math>\sum_j \theta_j</math> is a multiple of <math>\pi</math>. The angles are then sent out to all the players in the network.  
\bigoplus_j Y_j=\frac{1}{\pi}\sum_j\theta_j\pmod 2.
# Player <math>j</math> measures in the basis <math>\{|+_{\theta_j}\rangle,|-_{\theta_j}\rangle\}=\{{\frac{1}{\sqrt{2}}(|0\rangle+e^{i\theta_j}|1\rangle),\frac{1}{\sqrt{2}}(|0\rangle-e^{i\theta_j}|1\rangle)}\}</math>, and sends the outcome <math>Y_j=\{0,1\}</math> to the Verifier.  
<math>
# The state passes the verification test if <math>\bigoplus_j Y_j=\frac{1}{\pi} \sum_j \theta_j \pmod 2.</math>


====<span style="font-variant:small-caps">Anonymous Transmission</span>====
====<span style="font-variant:small-caps">Anonymous Transmission</span>====
\noindent ''{Input}: <math>n<math> players share a GHZ state. \\
 
''{Goal}: Anonymous transmission of quantum message <math>\ket{\psi}<math> from <math>\mathcal{S}<math> to <math>\mathcal{R}<math>.
''Input'': <math>n</math> players share a GHZ state.
# <math>\mathcal{S}<math> and <math>\mathcal{R}<math> do not do anything to their part of the state.
 
# Every player <math>j \in [n] \backslash \{ \mathcal{S}, \mathcal{R} \}<math>:  
''Goal'': Anonymous transmission of quantum message <math>|\psi\rangle</math> from <math>\mathcal{S}</math> to <math>\mathcal{R}</math>.
## Applies a Hadamard transform to her qubit, \
 
## Measures this qubit in the computational basis with outcome <math>m_j<math>,
# <math>\mathcal{S}</math> and <math>\mathcal{R}</math> do not do anything to their part of the state.
## Broadcasts <math>m_j<math>.  
# Every player <math>j \in [n] \backslash \{ \mathcal{S}, \mathcal{R} \}</math>:  
# <math>\mathcal{S}<math> picks a random bit <math>b \in_R \{ 0, 1 \}<math> and broadcasts <math>b<math>.  
## Applies a Hadamard transform to her qubit
# <math>\mathcal{S}<math> applies a phase flip <math>Z<math> to her qubit if <math>b=1<math>.  
## Measures this qubit in the computational basis with outcome <math>m_j</math>
# <math>\mathcal{R}<math> picks a random bit <math>b' \in_R \{ 0, 1 \}<math> and broadcasts <math>b'<math>.  
## Broadcasts <math>m_j</math>.  
# <math>\mathcal{R}<math> applies a phase flip <math>Z<math> to her qubit, if <math>b \oplus \underset{j \in [n] \backslash \{ \mathcal{S}, \mathcal{R} \</span>{\bigoplus} m_j = 1<math>.   
# <math>\mathcal{S}</math> picks a random bit <math>b \in_R \{ 0, 1 \}</math> and broadcasts <math>b</math>.  
# <math>\mathcal{S}<math> and <math>\mathcal{R}<math> share <math>\epsilon<math>-anonymous entanglement. <math>\mathcal{S}<math> then uses the quantum teleportation circuit with input <math>\ket{\psi}<math>, and obtains measurement outcomes <math>m_0, m_1<math>.  
# <math>\mathcal{S}</math> applies a phase flip <math>Z</math> to her qubit if <math>b=1</math>.  
# The players run a protocol to anonymously send bits <math>m_0, m_1<math> from <math>\mathcal{S}<math> to <math>\mathcal{R}<math> (see Further Information for details).  
# <math>\mathcal{R}</math> picks a random bit <math>b' \in_R \{ 0, 1 \}</math> and broadcasts <math>b'</math>.  
# <math>\mathcal{R}<math> applies the transformation described by <math>m_0, m_1<math> on her part of the entangled state and obtains <math>\ket{\psi}<math>.
# <math>\mathcal{R}</math> applies a phase flip <math>Z</math> to her qubit, if <math>b \oplus \underset{j \in [n] \backslash \{ \mathcal{S}, \mathcal{R} \}}{\bigoplus} m_j = 1</math>.   
# <math>\mathcal{S}</math> and <math>\mathcal{R}</math> share <math>\epsilon</math>-anonymous entanglement. <math>\mathcal{S}</math> then uses the quantum teleportation circuit with input <math>|\psi\rangle</math>, and obtains measurement outcomes <math>m_0, m_1</math>.  
# The players run a protocol to anonymously send bits <math>m_0, m_1</math> from <math>\mathcal{S}</math> to <math>\mathcal{R}</math> (see Further Information for details).  
# <math>\mathcal{R}</math> applies the transformation described by <math>m_0, m_1</math> on her part of the entangled state and obtains <math>|\psi\rangle</math>.


==Further Information==
==Further Information==
Write, autoreview, editor, reviewer
3,129

edits