Gottesman and Chuang Quantum Digital Signature: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 1: Line 1:
The [https://arxiv.org/abs/quant-ph/0105032 example protocol] achieves the functionality of [[Quantum Digital Signature|(Quantum) Digital Signatures (QDS)]] allowing the exchange of classical messages from sender to multiple recipients, with a guarantee that the signature has come from a genuine sender using quantum memory. It comes with all the [[Quantum Digital Signature#Properties|Properties]] of QDS.<br/> Such protocols require parties to store quantum states for comparison at a later stage. For simplicity, most protocols take into account the case of one sender and two recipients (Seller, buyer and verifier) exchanging single-bit classical messages.  
The [https://arxiv.org/abs/quant-ph/0105032 example protocol] achieves the functionality of [[Quantum Digital Signature|(Quantum) Digital Signatures (QDS)]] allowing the exchange of classical messages from sender to multiple recipients, with a guarantee that the signature has come from a genuine sender using quantum memory. It comes with all the [[Quantum Digital Signature#Properties|Properties]] of QDS. Such protocols require parties to store quantum states for comparison at a later stage. For simplicity, most protocols take into account the case of one sender and two recipients (Seller, buyer and verifier) exchanging single-bit classical messages.  


'''Tags:''' [[:Category:Multi Party Protocols|Multi Party (three)]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]], [[Quantum Digital Signature]], [[Prepare and Measure Quantum Digital Signature]], [[Measurement Device Independent Quantum Digital Signature (MDI-QDS)]]
'''Tags:''' [[:Category:Multi Party Protocols|Multi Party (three)]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]], [[Quantum Digital Signature]], [[Prepare and Measure Quantum Digital Signature]], [[Measurement Device Independent Quantum Digital Signature (MDI-QDS)]]
Line 24: Line 24:


==Further Information==
==Further Information==
This protocol was the first ever scheme designed for Quantum Digital Signatures. Due to unavailability of quantum memory at the current stage, this scheme has not seen enough experimental implementations, yet variations of the same without the need of quantum memory has some progress such as [[Prepare and Measure Quantum Digital Signature]], [[Measurement Device Independent Quantum Digital Signature (MDI-QDS)]], etc..
Following is the list of a few more protocols with similar requirement (quantum memory) but small variations.
'''Theoretical Papers'''
'''Theoretical Papers'''
# [https://arxiv.org/abs/quant-ph/0105032 GC-QDS (2001)] uses [[quantum one way function]] f(); Private keys: classical input x, Public keys: quantum output f(x).  
# [https://arxiv.org/abs/quant-ph/0105032 GC-QDS (2001)] uses [[quantum one way function]] f(); Private keys: classical input x, Public keys: quantum output f(x).  
Write, autoreview, editor, reviewer
3,129

edits