Write
262
edits
Line 60: | Line 60: | ||
== | ==Pseudocode== | ||
Every pair of parties share different quantum key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> respectively using Simon et al.’s QKD algorithm. | Every pair of parties share different quantum key matrices <math>K_{AB}</math>, <math>K_{AC}</math> and <math>K_{BC}</math> respectively using Simon et al.’s QKD algorithm. | ||
Line 86: | Line 86: | ||
## The Verifier then un-blinds the message <math>M'</math> using <math>K_{AC}^k</math> to obtain the message <math>M</math>. <br/> <math> M_k = M'_k \times (K_{AC}^k)^{-1} </math> | ## The Verifier then un-blinds the message <math>M'</math> using <math>K_{AC}^k</math> to obtain the message <math>M</math>. <br/> <math> M_k = M'_k \times (K_{AC}^k)^{-1} </math> | ||
## He then checks if the determinant of <math>M</math> obtained from the signature is the same as <math>det(M)</math> obtained from the Owner. If it holds, he verifies the following equations: <br/> <math> det(S^k) = det(M'_kK_{BC}^k) = det(M'_k) \times det(T^n_p) </math> <br/> <math> = (-1)^ndet(M'_k) = (-1)^{2n}det(M_k) </math> | ## He then checks if the determinant of <math>M</math> obtained from the signature is the same as <math>det(M)</math> obtained from the Owner. If it holds, he verifies the following equations: <br/> <math> det(S^k) = det(M'_kK_{BC}^k) = det(M'_k) \times det(T^n_p) </math> <br/> <math> = (-1)^ndet(M'_k) = (-1)^{2n}det(M_k) </math> | ||
==Further Information== | ==Further Information== | ||
<div style='text-align: right;'>''*contributed by Natansh Mathur''</div> | <div style='text-align: right;'>''*contributed by Natansh Mathur''</div> |