BB84 Quantum Key Distribution: Difference between revisions

Line 65: Line 65:
##  Bob chooses bit <math>Y_i\in_R\{0,1\}</math> such that <math>P(Y_i=1)=\gamma</math>
##  Bob chooses bit <math>Y_i\in_R\{0,1\}</math> such that <math>P(Y_i=1)=\gamma</math>
##  Bob measures <math>H^{X_i}|A_i\rangle</math> in basis <math>\{H^{Y_i}|0\rangle, H^{Y_i}|1\rangle\}</math> with outcome <math>B_i</math>
##  Bob measures <math>H^{X_i}|A_i\rangle</math> in basis <math>\{H^{Y_i}|0\rangle, H^{Y_i}|1\rangle\}</math> with outcome <math>B_i</math>
 
''At this stage Alice holds strings <math>X_1^n, A_1^n</math> and Bob <math>Y_1^n, B_1^n</math>, all of length <math>n</math>.''
*At this stage Alice holds strings <math>X_1^n, A_1^n</math> and Bob <math>Y_1^n, B_1^n</math>, all of length <math>n</math>
 
'''2.''' Sifting   
'''2.''' Sifting   
#Alice and Bob publicly announce <math>X_1^n, Y_1^n</math>
#Alice and Bob publicly announce <math>X_1^n, Y_1^n</math>
Line 75: Line 75:
### <math>X_1^{n'} = X_1^{n'}.</math>append<math>(X_i)</math>
### <math>X_1^{n'} = X_1^{n'}.</math>append<math>(X_i)</math>
### <math>Y_1^{n'} = Y_1^{n'}.</math>append<math>(Y_i)</math>
### <math>Y_1^{n'} = Y_1^{n'}.</math>append<math>(Y_i)</math>
*Now Alice holds strings <math>X_1^{n'}, A_1^{n'}</math> and Bob <math>Y_1^{n'}, B_1^{n'}</math>, all of length <math>n'\leq n</math>
''Now Alice holds strings <math>X_1^{n'}, A_1^{n'}</math> and Bob <math>Y_1^{n'}, B_1^{n'}</math>, all of length <math>n'\leq n</math>.''
 
'''3.''' Parameter estimation
'''3.''' Parameter estimation
#For <math>i=1,...,n'</math>
#For <math>i=1,...,n'</math>
Line 83: Line 84:
### Alice and Bob compute <math>Q_i = 1 - \delta_{A_iB_i}</math>, where <math>\delta_{A_iB_i}</math> is the Kronecker delta
### Alice and Bob compute <math>Q_i = 1 - \delta_{A_iB_i}</math>, where <math>\delta_{A_iB_i}</math> is the Kronecker delta
## size<math>Q</math> += 1;
## size<math>Q</math> += 1;
#Both Alice and Bob, each, compute <math>Q_X = \frac{1}{\text{size}Q} \sum_{i=1}^{n'}Q_i</math></br>
'''4.''' Error correction


*Both Alice and Bob, each, compute <math>Q_X = \frac{1}{\text{size}Q} \sum_{i=1}^{n'}Q_i</math></br>
''<math>C(\cdot,\cdot)</math> is an error correction subroutine determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
'''4.''' Error correction
*''<math>C(\cdot,\cdot)</math> is an error correction subroutine determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
#Both Alice and Bob run <math>C(A_1^{n'},B_1^{n'})</math>''.  
#Both Alice and Bob run <math>C(A_1^{n'},B_1^{n'})</math>''.  
#Bob obtains <math>\tilde{B}_1^{n'}</math>
#Bob obtains <math>\tilde{B}_1^{n'}</math>
'''5.''' Privacy amplification
'''5.''' Privacy amplification
*''<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from equation for key length <math>\ell</math> (see [[Quantum Key Distribution#Properties|Properties]]), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>''
 
''<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from equation for key length <math>\ell</math> (see [[Quantum Key Distribution#Properties|Properties]]), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>''
#Alice and Bob run <math>PA(A_1^{n'},\tilde{B}_1^{n'})</math> and obtain secret keys <math>K_A, K_B</math>;
#Alice and Bob run <math>PA(A_1^{n'},\tilde{B}_1^{n'})</math> and obtain secret keys <math>K_A, K_B</math>;


Write
262

edits