Write
262
edits
Line 45: | Line 45: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
l\geq | l\geq \frac{{n}}{\bar{s}}\eta_{opt} -\frac{{n}}{\bar{s}}h(\omega_{exp}-\delta_{est}) -\sqrt{\frac{{n}}{\bar{s}}}\nu_1 -\mbox{leak}_{EC} -3\log\Bigg(1-\sqrt{1-\Bigg(\frac{\epsilon_s}{4(\epsilon_{EA} + \epsilon_{EC})}\Bigg)^2}\Bigg)+2\log\Bigg(\frac{1}{2\epsilon_{PA}}\Bigg), | ||
\end{align} | \end{align} | ||
</math> | </math></br> | ||
where <math>\mbox{leak}_{EC}</math> is the leakage due to error correction step and the functions <math>\bar{s}</math>, <math>\eta_{opt}</math>, <math>\nu_1</math> and <math>\nu_2</math> are specified in below. | where <math>\mbox{leak}_{EC}</math> is the leakage due to error correction step and the functions <math>\bar{s}</math>, <math>\eta_{opt}</math>, <math>\nu_1</math> and <math>\nu_2</math> are specified in below. | ||
The security parameters of the error correction protocol, <math>\epsilon_{EC}</math> and <math>\epsilon'_{EC}</math>, mean that if the error correction step of the protocol (see below) does not abort, then <math>K_A=K_B</math> with probability at least <math>1-\epsilon_{EC}</math>, and for an honest implementation, the error correction protocol aborts with probability at most <math>\epsilon'_{EC}+\epsilon_{EC}</math>. | The security parameters of the error correction protocol, <math>\epsilon_{EC}</math> and <math>\epsilon'_{EC}</math>, mean that if the error correction step of the protocol (see below) does not abort, then <math>K_A=K_B</math> with probability at least <math>1-\epsilon_{EC}</math>, and for an honest implementation, the error correction protocol aborts with probability at most <math>\epsilon'_{EC}+\epsilon_{EC}</math>. |