Anonymous Transmission: Difference between revisions

Line 15: Line 15:


==Properties==
==Properties==
Security of a anonymous transmission protocol is defined in terms of the guessing probability, i.e., the maximum probability that adversaries guess the identity of the sender <math>S</math> or receiver <math>R</math> given all the classical and quantum information they have available at the end of the protocol.
Security of an anonymous transmission protocol is defined in terms of the guessing probability, i.e., the maximum probability that adversaries guess the identity of the sender <math>S</math> or receiver <math>R</math> given all the classical and quantum information they have available at the end of the protocol.
*'''Guessing probability''' Let <math>\mathcal{A}</math> be a subset of adversaries among <math>n</math> nodes. Let <math>C</math> be the register that contains all classical and quantum side information accessible to the adversaries. Then, the probability of adversaries guessing the sender is given by
*'''Guessing probability''' Let <math>\mathcal{A}</math> be a subset of adversaries among <math>n</math> nodes. Let <math>C</math> be the register that contains all classical and quantum side information accessible to the adversaries. Then, the probability of adversaries guessing the sender is given by
<math> P_{\text{guess}}[S|C, S\notin \mathcal{A}] = \max_{\{M^i\}} \sum_{i \in [n]} P[S=i|S\notin \mathcal{A}] \text{Tr}[M^i \cdot \rho_{C|S=i} ],</math></br>
<math> P_{\text{guess}}[S|C, S\notin \mathcal{A}] = \max_{\{M^i\}} \sum_{i \in [n]} P[S=i|S\notin \mathcal{A}] \text{Tr}[M^i \cdot \rho_{C|S=i} ],</math></br>
Write
262

edits