Secure Multiparty Delegated Classical Computation: Difference between revisions

(Created page with "It provides a method for computing nonlinear multivariable functions using only linear classical computing and limited manipulation of quantum information To demonstrate this...")
 
Line 59: Line 59:
## <math>C_i</math> applies <math>V^{r_i}U^{x_i}</math> on the received qubit and sends it to client <math>C_{i+1}</math>.
## <math>C_i</math> applies <math>V^{r_i}U^{x_i}</math> on the received qubit and sends it to client <math>C_{i+1}</math>.
# <math>C_n</math> applies <math>V^{r_n}U^{x_n}</math> on the received qubit.
# <math>C_n</math> applies <math>V^{r_n}U^{x_n}</math> on the received qubit.
# Any client then applies <math>(U^\dagger)^{\oplus_i x_i}</math>.
# Any client then applies <math>(U^\dagger)^{\oplus_i x_i}</math>. <br> <math>(U^\dagger)^\oplus_i#1_i{x}<br/> \underbrace{V^{r_n}U^{x_n}}_{\mathcal{C}_n} <br/> ... <br/> \underbrace{V^{r_2}U^{x_2}}_{\mathcal{C}_2} <br/> \underbrace{V^{r_1}U^{x_1}}_{\mathcal{C}_1} <br/> \ket{0}= <br/> |r \oplus f\rangle
    \begin{equation}
        \label{wopadding}
        (U^\dagger)^\oplus_i#1_i{x}\\
        \underbrace{V^{r_n}U^{x_n}}_{\mathcal{C}_n}\\
        ...\\
        \underbrace{V^{r_2}U^{x_2}}_{\mathcal{C}_2}\\
        \underbrace{V^{r_1}U^{x_1}}_{\mathcal{C}_1}\\
        \ket{0}=\\
        \ket{r \oplus f}
    \end{equation}
# The resulting state is now sent to the server who measures the outcome <math>r \oplus f</math> and announces it.
# The resulting state is now sent to the server who measures the outcome <math>r \oplus f</math> and announces it.
# The clients locally compute XOR of the random bits of other clients.
# The clients locally compute XOR of the random bits of other clients.
# They then perform the operation <math>f = r \oplus (r \oplus f)</math> to get the result.      
# They then perform the operation <math>f = r \oplus (r \oplus f)</math> to get the result.
 


===XOR Routine===
===XOR Routine===
Write, autoreview, editor, reviewer
3,129

edits