Device-Independent Quantum Key Distribution: Difference between revisions

No edit summary
Line 41: Line 41:
* <math>\mbox{leak}_{EC}</math> leakage in the error correction protocol
* <math>\mbox{leak}_{EC}</math> leakage in the error correction protocol
==Properties==
==Properties==
Either Protocol (see [[Device Independent Quantum Key Distribution#Pseudo-code|Pseudo-code]]) abort with probability higher than <math>1-(\epsilon_{EA}+\epsilon_{EC})</math>, or it generates a
Either Protocol (see [[Device Independent Quantum Key Distribution#Pseudo-code|Pseudo-code]]) abort with probability higher than <math>1-(\epsilon_{EA}+\epsilon_{EC})</math>, or it generates a</br>
<math>(2\epsilon_{EC}+\epsilon_{PA}+\epsilon_s)</math>-correct-and-secret key  of length</br>
<math>(2\epsilon_{EC}+\epsilon_{PA}+\epsilon_s)</math>-correct-and-secret key  of length</br>
<math> l\geq& \frac{{n}}{\bar{s}}\eta_{opt} -\frac{{n}}{\bar{s}}h(\omega_{exp}-\delta_{est}) -\sqrt{\frac{{n}}{\bar{s}}}\nu_1  -\mbox{leak}_{EC} </math></br>
<math> \quad -3\log\de{1-\sqrt{1-\de{\frac{\epsilon_s}{4(\epsilon_{EA} + \epsilon_{EC})}}^2}}+2\log\de{\frac{1}{2\epsilon_{PA}}}</math></br>
where <math>\mbox{leak}_{EC}</math> is the leakage due to error correction step and the functions <math>\bar{s}</math>, <math>\eta_{opt}</math>, <math>\nu_1</math> and <math>\nu_2</math> are specified in Table below.
where <math>\mbox{leak}_{EC}</math> is the leakage due to error correction step and the functions <math>\bar{s}</math>, <math>\eta_{opt}</math>, <math>\nu_1</math> and <math>\nu_2</math> are specified in Table below.
The security parameters of the error correction protocol, <math>\epsilon_{EC}</math> and <math>\epsilon'_{EC}</math>, mean that if the error correction step in Protocol 1 does not abort, then <math>K_A=K_B</math> with probability at least <math>1-\epsilon_{EC}</math>, and for an honest implementation, the error correction protocol aborts with probability at most <math>\epsilon'_{EC}+\epsilon_{EC}</math>.
The security parameters of the error correction protocol, <math>\epsilon_{EC}</math> and <math>\epsilon'_{EC}</math>, mean that if the error correction step in Protocol 1 does not abort, then <math>K_A=K_B</math> with probability at least <math>1-\epsilon_{EC}</math>, and for an honest implementation, the error correction protocol aborts with probability at most <math>\epsilon'_{EC}+\epsilon_{EC}</math>.


Write, autoreview, editor, reviewer
3,129

edits