Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

m
Line 89: Line 89:
</div>
</div>
::::#The server uses <math>pk_{i+1}</math> to recrypt 'c' (previously encrypted using <math>pk_{i}</math>) and encrypt other variables under HE: <math>\mathrm{HE.Enc}_{pk_{i+1}}(c)</math>, <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>.  
::::#The server uses <math>pk_{i+1}</math> to recrypt 'c' (previously encrypted using <math>pk_{i}</math>) and encrypt other variables under HE: <math>\mathrm{HE.Enc}_{pk_{i+1}}(c)</math>, <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>.  
::::#The server computes the encryption of <math>x,z</math> (stored in <math>\tilde{z},\tilde{x}</math>) under <math>pk_{i+1}</math> by performing decryption circuit on <math>\mathrm{HE.Enc}_{pk_{i+1}}(c)</math> using <math>\mathrm{HE.Enc}_{pk_{i+1}}(sk_i)</math> (provided by the evaluation key). Here, c, as stated before is the concatenation of encryption of x, z under <math>pk_{i}</math>, provided by the Client.
::::#The server computes the encryption of <math>z,x</math> (stored in <math>\tilde{z},\tilde{x}</math>) under <math>pk_{i+1}</math> by performing decryption circuit on <math>\mathrm{HE.Enc}_{pk_{i+1}}(c)</math> using <math>\mathrm{HE.Enc}_{pk_{i+1}}(sk_i)</math> (provided by the evaluation key). Here, c, as stated before is the concatenation of encryption of x, z under <math>pk_{i}</math>, provided by the Client.
::::#The server (homomorphically) computes <math>(\mu_0,r_0)</math> and <math>(\mu_1,r_1)</math>, using <math>\mathrm{HE.Enc}_{pk_{i+1}}(t_{sk_i},sk_i)</math>, provided by the evaluation key <math>\mathrm{evk}_i</math> encrypted under <math>pk_{i+1}</math>, and <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>, from the previous step.  
::::#The server (homomorphically) computes <math>(\mu_0,r_0)</math> and <math>(\mu_1,r_1)</math>, using <math>\mathrm{HE.Enc}_{pk_{i+1}}(t_{sk_i},sk_i)</math>, provided by the evaluation key <math>\mathrm{evk}_i</math> encrypted under <math>pk_{i+1}</math>, and <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>, from the previous step.  
::::#The server then uses this results of the last three steps, to (homomorphically) update Pauli encryptions for encrypted <math>CNOT^s_{l,n}</math>: </br>(<math>\tilde {x}^{[l]},\tilde{z}^{[l]};\tilde {x}^{[n]},\tilde{z}^{[n]})\rightarrow (\tilde {x}^{[l]},\tilde{z}^{[l]}+d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1);\tilde {x}^{[n]}+\mu_0,\tilde{z}^{[n]})</math></br>  
::::#The server then uses this results of the last three steps, to (homomorphically) update Pauli encryptions for encrypted <math>CNOT^s_{l,n}</math>: </br>(<math>\tilde {x}^{[l]},\tilde{z}^{[l]};\tilde {x}^{[n]},\tilde{z}^{[n]})\rightarrow (\tilde {x}^{[l]},\tilde{z}^{[l]}+d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1);\tilde {x}^{[n]}+\mu_0,\tilde{z}^{[n]})</math></br>  
Write, autoreview, editor, reviewer
3,129

edits