Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

Line 90: Line 90:
::::#The server uses <math>pk_{i+1}</math> to compute HE.Enc<math>_{pk_{i+1}}(c_{x,z,pk_i})</math> and <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>.  
::::#The server uses <math>pk_{i+1}</math> to compute HE.Enc<math>_{pk_{i+1}}(c_{x,z,pk_i})</math> and <math>\mathrm{HE.Enc}_{pk_{i+1}}(\hat{c},y,d)</math>.  
::::#The server computes the encryption of <math>x,z</math> under <math>pk_{i+1}</math> by homomorphically running the decryption circuit on inputs <math>\mathrm{HE.Enc}_{pk_{i+1}}(sk_i)</math> and <math>\mathrm{HE.Enc}_{pk_{i+1}}(c_{x,z,pk_i})</math>.
::::#The server computes the encryption of <math>x,z</math> under <math>pk_{i+1}</math> by homomorphically running the decryption circuit on inputs <math>\mathrm{HE.Enc}_{pk_{i+1}}(sk_i)</math> and <math>\mathrm{HE.Enc}_{pk_{i+1}}(c_{x,z,pk_i})</math>.
::::#The server homomorphically computes <math>(\mu_0,r_0)</math> and <math>(\mu_1,r_1)</math>, using the secret texts encrypting <math>t_{sk_i},sk_i,\hat{c},y,d</math> (all encrypted with HE under public key <math>pk_{i+1}</math>). The server then uses this result, along with the secret texts encrypting <math>x,z,d</math>, to homomorphically compute <math>\tilde{z} = z + (d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1)),0)</math> and <math>\tilde{x} = x + (0,\mu_0)</math>.  
::::#The server homomorphically computes <math>(\mu_0,r_0)</math> and <math>(\mu_1,r_1)</math>, using the secret texts encrypting <math>t_{sk_i},sk_i,\hat{c},y,d</math> (all encrypted with HE under public key <math>pk_{i+1}</math>). The server then uses this result, along with the secret texts encrypting <math>x,z,d</math>, to homomorphically compute <math>\tilde{z} = z + (d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1)),0)</math> and <math>\tilde{x} = x + (0,\mu_0)</math>.</br>
#Server sends updated encryptions of Pauli corrections <math>\tilde{x},\tilde{z}</math> and the classical outcome after measurement of the output state (or Quantum one time padded state in case of quantum output) to Client.
3. Server sends updated encryptions of Pauli corrections <math>\tilde{x},\tilde{z}</math> and the classical outcome after measurement of the output state (or Quantum one time padded state in case of quantum output) to Client.


=== '''Stage 3''' Client’s Output Correction ===
=== '''Stage 3''' Client’s Output Correction ===
Write, autoreview, editor, reviewer
3,129

edits