Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

m
Line 73: Line 73:
###The Pauli key encryptions are homomorphically updated  according to <math>P_{zx}</math>.
###The Pauli key encryptions are homomorphically updated  according to <math>P_{zx}</math>.
### Three encrypted CNOTs are used to correct <math>C^{zx}</math> as follows under <math>\mathrm{AltHE}</math>.
### Three encrypted CNOTs are used to correct <math>C^{zx}</math> as follows under <math>\mathrm{AltHE}</math>.
####Server converts <math>\hat{c} = </math>\mathrm{HE.Convert(c)}</math>.
####Server converts <math>\hat{c} = \mathrm{HE.Convert(c)}</math>.
####Server generates  <math>\sum_{\mu\in\{0,1\},r}\sqrt{D(\mu,r)}|\mu,r\rangle</math>
####Server generates  <math>\sum_{\mu\in\{0,1\},r}\sqrt{D(\mu,r)}|\mu,r\rangle</math>
#### Servers entangles above superposition and <math>\psi</math> with a third register as follows:</br><math>\sum_{a,b,\mu\in\{0,1\},r}\alpha_{ab}\sqrt{D(\mu,r)}|a,b\rangle|\mu,r\rangle|f_a(r)\rangle</math>, such that</br>  <math>f_0=\mathrm{AltHE.Enc}_{pk}()</math>;</br><math>f_1(\mu_1,r_1)=f_0 (\mu_0,r_0)\oplus_H \hat{c}=\mathrm{AltHE.Enc}_{pk}(\mu_0,r_0)\oplus_H \mathrm{AltHE.Enc}_{pk}(s)</math>  
#### Servers entangles above superposition and <math>\psi</math> with a third register as follows:</br><math>\sum_{a,b,\mu\in\{0,1\},r}\alpha_{ab}\sqrt{D(\mu,r)}|a,b\rangle|\mu,r\rangle|f_a(r)\rangle</math>, such that</br>  <math>f_0=\mathrm{AltHE.Enc}_{pk}()</math>;</br><math>f_1(\mu_1,r_1)=f_0 (\mu_0,r_0)\oplus_H \hat{c}=\mathrm{AltHE.Enc}_{pk}(\mu_0,r_0)\oplus_H \mathrm{AltHE.Enc}_{pk}(s)</math>  
Write, autoreview, editor, reviewer
3,129

edits