Write, autoreview, editor, reviewer
3,129
edits
Line 75: | Line 75: | ||
####The server applies encrypted CNOT operation to the two qubit state <math>Z^zX^x|\psi\rangle</math> using the secret text <math>\hat{c} = </math>HE.Convert<math>(c)</math>. | ####The server applies encrypted CNOT operation to the two qubit state <math>Z^zX^x|\psi\rangle</math> using the secret text <math>\hat{c} = </math>HE.Convert<math>(c)</math>. | ||
####Server generates following superposition sampled over random distribution D\sqrt{D(\mu,r)}|\mu,r\rangle</math> | ####Server generates following superposition sampled over random distribution D\sqrt{D(\mu,r)}|\mu,r\rangle</math> | ||
#### Servers then entangles the two superposition states on quantum input and random distribution D with a third register for function output as follows:</br><math>\sum_{a,b,\mu\in\{0,1\},r}\alpha_{ab}\sqrt{D(\mu,r)}|a,b\rangle|\mu,r\rangle|f_a(r)\rangle</math>,</br> such that <math>f_0=AltHE.Enc_{pk}();f_1(\mu_1,r_1)=f_0 (\mu_0,r_0)\oplus_H \hat{c}=AltHE.Enc_{pk}(\mu_0,r_0)\oplus_H AltHE.Enc_{pk}(s)</math> | #### Servers then entangles the two superposition states on quantum input and random distribution D with a third register for function output as follows:</br><math>\sum_{a,b,\mu\in\{0,1\},r}\alpha_{ab}\sqrt{D(\mu,r)}|a,b\rangle|\mu,r\rangle|f_a(r)\rangle</math>,</br> such that <math>f_0=AltHE.Enc_{pk}()</math>;</br><math>f_1(\mu_1,r_1)=f_0 (\mu_0,r_0)\oplus_H \hat{c}=AltHE.Enc_{pk}(\mu_0,r_0)\oplus_H AltHE.Enc_{pk}(s)</math> | ||
####Server measures the last register to get a secret text (function output) <math>y = AltHE.Enc_{pk}(\mu_0,r_0)=AltHE.Enc_{pk}(\mu_1,r_1)\oplus_H AltHE.Enc_{pk}(s)</math>. | ####Server measures the last register to get a secret text (function output) <math>y = AltHE.Enc_{pk}(\mu_0,r_0)=AltHE.Enc_{pk}(\mu_1,r_1)\oplus_H AltHE.Enc_{pk}(s)</math>. | ||
####Server performs Hadamard on second register and measures it to get a string d such that first register of input quantum state is reduced to the following ideal state:</br><math>(Z^{d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1))}\otimes X^{\mu_0})\textrm{CNOT}_{1,2}^s|\psi\rangle</math> </br>where <math>(\mu_0,r_0)=(\mu_1,r_1)\oplus_H s</math> as <math>\oplus_H</math> is the homomorphic XOR operation. | ####Server performs Hadamard on second register and measures it to get a string d such that first register of input quantum state is reduced to the following ideal state:</br><math>(Z^{d\cdot ((\mu_0,r_0)\oplus (\mu_1,r_1))}\otimes X^{\mu_0})\textrm{CNOT}_{1,2}^s|\psi\rangle</math> </br>where <math>(\mu_0,r_0)=(\mu_1,r_1)\oplus_H s</math> as <math>\oplus_H</math> is the homomorphic XOR operation. |