Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

m
Line 67: Line 67:
### if <math>c_i=</math>H then<div class="floatright">//Hadamard Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{b}^{[l]},\tilde{a}^{[l]})</math><div class="floatright">//Hadamard tranforms X gate into Z and Z into X</div>
### if <math>c_i=</math>H then<div class="floatright">//Hadamard Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{b}^{[l]},\tilde{a}^{[l]})</math><div class="floatright">//Hadamard tranforms X gate into Z and Z into X</div>
### if <math>c_i=</math>P then <div class="floatright">//Pauli Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{a}^{[l]},\tilde{a}^{[l]}\oplus\tilde{b}^{[l]})</math>
### if <math>c_i=</math>P then <div class="floatright">//Pauli Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{a}^{[l]},\tilde{a}^{[l]}\oplus\tilde{b}^{[l]})</math>
### if <math>c_i=</math>CNOT with m as target bit and n as control bit then (CNOT)</br>(\tilde {a}^{[l]},\tilde{b}^{[l]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[l]},\tilde{b}^{[l]}\oplus \tilde {b}^{[n]};\tilde{a}^{[l]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math>
### if <math>c_i=</math>CNOT with m as target bit and n as control bit then <div class="floatright">//CNOT</div></br>(<math>\tilde {a}^{[l]},\tilde{b}^{[l]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[l]},\tilde{b}^{[l]}\oplus \tilde {b}^{[n]};\tilde{a}^{[l]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math>
## If ci = T gate then //Toffoli Gate on lth,nth,oth key bits
## If ci = T gate then //Toffoli Gate on lth,nth,oth key bits
### The Toffoli gate is applied to the Pauli one time padded state and the state is reduced to combination of Clifford C and Pauli P corrections as follows:<br/>TXa[l]Zb[l]Xa[n]Zb[n]Xa[o]Zb[o] |ψi<br/>=TXa[l]Zb[l]Xa[n]Zb[n]Xa[o]Zb[o]T † T |ψi<br/>= CNOTl,oa[n]CNOTn,oa[l]CZl,nb[o]Xa[l]Zb[l]T |ψi<br/>= CNOTl,oa[n]CNOTn,oa[l]HnCNOTl,nb[o]HnXa[l]Zb[l]T |ψi<br/>= CabPabT |ψi, where C{CNOT,H} and<br/>
### The Toffoli gate is applied to the Pauli one time padded state and the state is reduced to combination of Clifford C and Pauli P corrections as follows:<br/>TXa[l]Zb[l]Xa[n]Zb[n]Xa[o]Zb[o] |ψi<br/>=TXa[l]Zb[l]Xa[n]Zb[n]Xa[o]Zb[o]T † T |ψi<br/>= CNOTl,oa[n]CNOTn,oa[l]CZl,nb[o]Xa[l]Zb[l]T |ψi<br/>= CNOTl,oa[n]CNOTn,oa[l]HnCNOTl,nb[o]HnXa[l]Zb[l]T |ψi<br/>= CabPabT |ψi, where C{CNOT,H} and<br/>
Write, autoreview, editor, reviewer
3,129

edits