Classical Fully Homomorphic Encryption for Quantum Circuits: Difference between revisions

m
Line 65: Line 65:
# For all i, <math>c_i</math> gate is applied on qubit l and the <math>l_{th}</math> bits of pad key <math>(\tilde {a}^{[l]},\tilde{b}^{[l]})</math> are updated to <math>(\tilde {a}'^{[l]},\tilde{b}'^{[l]})</math> as follows.  
# For all i, <math>c_i</math> gate is applied on qubit l and the <math>l_{th}</math> bits of pad key <math>(\tilde {a}^{[l]},\tilde{b}^{[l]})</math> are updated to <math>(\tilde {a}'^{[l]},\tilde{b}'^{[l]})</math> as follows.  
## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then <div class="floatright">//(<math>c_iX^{a^{[l]}}Z^{b^{[l]}}|\psi\rangle=X^{a'^{[l]}}Z^{b'^{[l]}}c_i|\psi\rangle</math>)</div>
## If <math>c_i=\{P,H,CNOT\}</math>, a Clifford gate then <div class="floatright">//(<math>c_iX^{a^{[l]}}Z^{b^{[l]}}|\psi\rangle=X^{a'^{[l]}}Z^{b'^{[l]}}c_i|\psi\rangle</math>)</div>
### if <math>c_i=</math>H then<div class="floatright">//(Hadamard Gate)</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{b}^{[l]},\tilde{a}^{[l]})</math>(Hadamard tranforms X gate into Z and Z into X)
### if <math>c_i=</math>H then<div class="floatright">//Hadamard Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{b}^{[l]},\tilde{a}^{[l]})</math><div class="floatright">//Hadamard tranforms X gate into Z and Z into X</div>
### if <math>c_i=</math>P then <div class="floatright">//Pauli Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{a}^{[l]},\tilde{a}^{[l]}\oplus\tilde{b}^{[l]})<math>
### if <math>c_i=</math>P then <div class="floatright">//Pauli Gate</div></br><math>(\tilde {a}^{[l]},\tilde{b}^{[l]})\rightarrow (\tilde{a}^{[l]},\tilde{a}^{[l]}\oplus\tilde{b}^{[l]})</math>
### if <math>c_i=</math>CNOT with m as target bit and n as control bit then (CNOT)</br>(\tilde {a}^{[l]},\tilde{b}^{[l]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[l]},\tilde{b}^{[l]}\oplus \tilde {b}^{[n]};\tilde{a}^{[l]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math>
### if <math>c_i=</math>CNOT with m as target bit and n as control bit then (CNOT)</br>(\tilde {a}^{[l]},\tilde{b}^{[l]};\tilde {a}^{[n]},\tilde{b}^{[n]})\rightarrow (\tilde {a}^{[l]},\tilde{b}^{[l]}\oplus \tilde {b}^{[n]};\tilde{a}^{[l]}\oplus \tilde {a}^{[n]},\tilde{b}^{[n]})</math>
## If ci = T gate then //Toffoli Gate on lth,nth,oth key bits
## If ci = T gate then //Toffoli Gate on lth,nth,oth key bits
Write, autoreview, editor, reviewer
3,129

edits