BB84 Quantum Key Distribution: Difference between revisions

m
Line 67: Line 67:
<u>'''Stage 1'''</u> Distribution and measurement
<u>'''Stage 1'''</u> Distribution and measurement
#For i=1,2,...,n
#For i=1,2,...,n
##  Sender chooses random bits <math>X_i\in\{0,1\}</math> and <math>A_i\in_R\{0,1\}</math> such that <math>P(X_i=1)=\gamma</math>
##  Sender chooses random bits <math>X_i\epsilon\{0,1\}</math> and <math>A_i\epsilon_R\{0,1\}</math> such that <math>P(X_i=1)=\gamma</math>
##  Sender prepares <math>H^{X_i}\ket{A_i}</math> and sends it to Bob
##  Sender prepares <math>H^{X_i}|A_i\rangle</math> and sends it to Bob
##  Receiver announces receiving a state
##  Receiver announces receiving a state
##  Receiver chooses bit <math>Y_i\in_R\{0,1\}</math> such that <math>P(Y_i=1)=\gamma</math>
##  Receiver chooses bit <math>Y_i\in_R\{0,1\}</math> such that <math>P(Y_i=1)=\gamma</math>
##  Receiver measures <math>H^{X_i}\ket{A_i}</math> in basis <math>\{H^{Y_i}\ket{0}, H^{Y_i}\ket{1}\}</math> with outcome <math>B_i</math>
##  Receiver measures <math>H^{X_i}|A_i\rangle</math> in basis <math>\{H^{Y_i}|0\rangle, H^{Y_i}|1\rangle\}</math> with outcome <math>B_i</math>
    
    
*At this stage Sender holds strings <math>X_1^n, A_1^n</math> and Receiver <math>Y_1^n, B_1^n</math>, all of length <math>n</math>
*At this stage Sender holds strings <math>X_1^n, A_1^n</math> and Receiver <math>Y_1^n, B_1^n</math>, all of length <math>n</math>
Line 78: Line 78:
#For i=1,2,....,n
#For i=1,2,....,n
## If <math>X_i=Y_i</math>
## If <math>X_i=Y_i</math>
### <math>A_1^{n'} = A_1^{n'}.\tn{append}(A_i)</math>
### <math>A_1^{n'} = A_1^{n'}.</math>append</math>(A_i)</math>
### <math>B_1^{n'} = B_1^{n'}.\tn{append}(B_i)</math>
### <math>B_1^{n'} = B_1^{n'}.</math>append<math>(B_i)</math>
### <math>X_1^{n'} = X_1^{n'}.\tn{append}(X_i)</math>
### <math>X_1^{n'} = X_1^{n'}.</math>append<math>(X_i)</math>
### <math>Y_1^{n'} = Y_1^{n'}.\tn{append}(Y_i)</math>
### <math>Y_1^{n'} = Y_1^{n'}.</math>append<math>(Y_i)</math>
*Now Sender holds strings <math>X_1^{n'}, A_1^{n'}</math> and Receiver <math>Y_1^{n'}, B_1^{n'}</math>, all of length <math>n'\leq n</math>
*Now Sender holds strings <math>X_1^{n'}, A_1^{n'}</math> and Receiver <math>Y_1^{n'}, B_1^{n'}</math>, all of length <math>n'\leq n</math>
<u>'''Stage 3'''</u> Parameter estimation
<u>'''Stage 3'''</u> Parameter estimation
Line 91: Line 91:
## size<math>Q</math> += 1\;
## size<math>Q</math> += 1\;


Both Sender and Receiver, each, compute <math>Q_X = \frac{1}{\tn{size}Q} \sum_{i=1}^{n'}Q_i</math>
*Both Sender and Receiver, each, compute <math>Q_X = \frac{1}{\tn{size}Q} \sum_{i=1}^{n'}Q_i</math></br>
<u>'''Stage 4'''</u> Error correction
<u>'''Stage 4'''</u> Error correction
<math>C(\cdot,\cdot)</math> is an error correction subroutine determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
#<math>C(\cdot,\cdot)</math> is an error correction subroutine determined by the previously estimated value of <math>Q_Z</math> and with error parameters  <math>\epsilon'_{\rm EC}</math> and <math>\epsilon_{\rm EC}</math>
Both Sender and Receiver run <math>C(A_1^{n'},B_1^{n'})</math>. Receiver obtains <math>\tilde{B}_1^{n'}</math>
#Both Sender and Receiver run <math>C(A_1^{n'},B_1^{n'})</math>.  
#Receiver obtains <math>\tilde{B}_1^{n'}</math>
<u>'''Stage 5'''</u> Privacy amplification
<u>'''Stage 5'''</u> Privacy amplification
<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from Eq.(3), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>
#<math>PA(\cdot,\cdot)</math> is a privacy amplification subroutine determined by the size <math>\ell</math>, computed from Eq.(3), and  with secrecy parameter <math>\epsilon_{\rm PA}</math>
Sender and Receiver run $PA(A_1^{n'},\tilde{B}_1^{n'})$ and obtain secret keys $K_A, K_B$\;  
#Sender and Receiver run $PA(A_1^{n'},\tilde{B}_1^{n'})$ and obtain secret keys $K_A, K_B$\;
 
==Relevant Papers==
==Relevant Papers==
Write, autoreview, editor, reviewer
3,129

edits