Prepare and Measure Quantum Digital Signature: Difference between revisions

no edit summary
No edit summary
Line 3: Line 3:
Digital Signatures (QDS) allow the exchange of classical messages from sender to multiple recipients, with a guarantee that the signature has come from a genuine sender. Additionally, it comes with the properties of (i) [[Quantum Digital Signature#Properties|transferability]] i.e. messages with DS can be forwarded from one recipient to another such that DS is verifiable to have come from the original sender, (ii) [[Quantum Digital Signature#Properties|non-repudiation]] i.e at any stage after sending the message to one recipient, sender cannot deny having sent the message and corresponding DS, and (iii) [[Quantum Digital Signature#Properties|unforgeability]] i.e. a dishonest recipient cannot alter or fake the sender's DS and forward it to other recipients successfully. <br/> Such protocols require parties to prepare and measure quantum states instantly without having to store them. For simplicity, most protocols take into account the case of one sender and two recipients (Seller, buyer and verifier) exchanging single-bit classical messages.
Digital Signatures (QDS) allow the exchange of classical messages from sender to multiple recipients, with a guarantee that the signature has come from a genuine sender. Additionally, it comes with the properties of (i) [[Quantum Digital Signature#Properties|transferability]] i.e. messages with DS can be forwarded from one recipient to another such that DS is verifiable to have come from the original sender, (ii) [[Quantum Digital Signature#Properties|non-repudiation]] i.e at any stage after sending the message to one recipient, sender cannot deny having sent the message and corresponding DS, and (iii) [[Quantum Digital Signature#Properties|unforgeability]] i.e. a dishonest recipient cannot alter or fake the sender's DS and forward it to other recipients successfully. <br/> Such protocols require parties to prepare and measure quantum states instantly without having to store them. For simplicity, most protocols take into account the case of one sender and two recipients (Seller, buyer and verifier) exchanging single-bit classical messages.


'''Tags:''' [[:Category:Multi Party Protocols|Multi Party (three)]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]], [[Quantum Digital Signature]], [[Quantum Digital Signature with Quantum Memory]], [[Measurement Device Independent Quantum Digital Signature (MDI-QDS)]]
'''Tags:''' [[:Category:Multi Party Protocols|Multi Party (three)]], [[:Category:Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category:Specific Task|Specific Task]], [[Quantum Digital Signature]], [[Quantum Digital Signature with Quantum Memory]], [[Measurement Device Independent Quantum Digital Signature (MDI-QDS)]], Unconditional Security
[[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Prepare and Measure Network Stage]]
[[Category:Multi Party Protocols]] [[Category:Quantum Enhanced Classical Functionality]][[Category:Specific Task]][[Category:Prepare and Measure Network Stage]]
== Requirements ==
== Requirements ==
Write, autoreview, editor, reviewer
3,129

edits