Trap Code for Quantum Authentication: Difference between revisions

From Quantum Protocol Zoo
Jump to navigation Jump to search
(Created page with "==Notation== *<math>\rho</math>: 1-qubit input state ==Protocol Description== *'''''Encoding:''''' #Input: <math>\rho</math>, pair of keys <math>k=(k_1, k_2)</math> #Apply a...")
 
No edit summary
Line 22: Line 22:
#[https://arxiv.org/pdf/1211.1080.pdf| Broadbent et al. (2012)]
#[https://arxiv.org/pdf/1211.1080.pdf| Broadbent et al. (2012)]
#[https://arxiv.org/pdf/1607.03075.pdf| Broadbent and Wainewright (2016).]
#[https://arxiv.org/pdf/1607.03075.pdf| Broadbent and Wainewright (2016).]
<div style='text-align: right;'>''contributed by Shraddha Singh and Isabel Nha Minh Le''</div>

Revision as of 12:42, 22 December 2021

Notation

  • : 1-qubit input state


Protocol Description

  • Encoding:
  1. Input: , pair of keys
  2. Apply an error correction code (corrects up to errors, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle d=2t+1} )
  3. Append an additional trap register of qubits in state
  4. Append a second additional trap register of qubits in state
  5. Permute the total -qubit register by according to the key Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1}
  6. Apply a Pauli encryption Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{k_2}} according to key Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2}
  • Decoding:
  1. Input: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^\prime} (state after encoding), pair of keys Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=(k_1, k_2)}
  2. Apply Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{k_2}} according to key Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2}
  3. Apply inverse permutation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{k_1}^\dagger} according to the key Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1}
  4. Measure the last Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} qubits in the Hadamard basis
  5. Measure the second last Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} qubits in the computational basis
    a. If the two measurements result in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |+\rangle\langle +|} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |0\rangle\langle 0|} , an additional flag qubit in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathrm{ACC}\rangle\langle\mathrm{ACC}|} is appended and the quantum message is decoded according to the error correction code
    b. Otherwise, an additional flag qubit in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\mathrm{REJ}\rangle\langle\mathrm{REJ}|} is appended and the (disturbed) encoded quantum message is replaced by a fixed state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega}


References

  1. Broadbent et al. (2012)
  2. Broadbent and Wainewright (2016).
contributed by Shraddha Singh and Isabel Nha Minh Le