Editing
Quantum Key Distribution
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functionality Description== Quantum key distribution (QKD) is a task that enables two parties, Alice and Bob, to establish a classical secret key by using quantum systems. A classical secret key is a random string of bits known to only Alice and Bob, and completely unknown to any third party, namely an eavesdropper. Such a secret key can for example be used to encrypt a classical message sent over a public channel. '''Tags:''' [[:Category: Two Party Protocols|Two Party]], [[:Category: Quantum Enhanced Classical Functionality|Quantum Enhanced Classical Functionality]], [[:Category: Specific Task|Specific Task]], unconditional security (information theoretical security), random number generator, key generation, secret key [[Category: Two Party Protocols]] [[Category: Quantum Enhanced Classical Functionality]] [[Category:Specific Task]] == Use-cases == * QKD can replace Diffie-Hellman key agreement protocols. For example in TLS, SSL, IPsec, etc. * If secure key rate is sufficiently high, one can use QKD to generate a secure key that will be used for information theoretically secure authenticated encryption scheme, e.g. using one-time pad together with an authentication scheme like those presented in [[Quantum Key Distribution #References|[1] ]]. * [[Cross-platform finance]] * [[Toward regulation for security and privacy]] ==Protocols== *[[BB84 Quantum Key Distribution]]: [[:Category: Prepare and Measure Network Stage|Prepare and Measure Network Stage]] *[[Device Independent Quantum Key Distribution]]:[[:Category:Entanglement Distribution Network stage| Entanglement Distribution Network Stage]] Device-Independent Quantum Key Distribution (DI-QKD) is secure under weaker assumptions than BB84 QKD. In particular, and contrary to BB84 QKD, DI-QKD relaxes the assumption that the operations performed by the parties' measurement devices are known and well characterized. [[Category: Prepare and Measure Network Stage]] [[Category:Entanglement Distribution Network stage]] ==Properties== A quantum key distribution protocol is secure if it is ''correct'' and ''secret''. Correctness is the statement that Alice and Bob share the same string of bits, namely the secret key, at the end of the protocol. Secrecy is the statement that the eavesdropper is (nearly) ignorant about the final key. *'''Correctness''' A QKD protocol is <math>\epsilon_{\rm corr}</math>-correct if the probability that the final key of Alice differs from the final key of Bob, is smaller than <math>\epsilon_{\rm corr}</math> *'''Secrecy''' A QKD protocol is <math>\epsilon_{\rm sec}</math>-secret if for every input state it holds that <math> \frac{1}{2}{\|{\rho_{K_AE}}-{\tau_{K_A}\otimes \rho_E}\|}_1\leq \epsilon_{\rm sec},</math> where <math>\tau_{K_A}=\frac{1}{|K_A|}\sum_{k}|{k}\rangle\langle{k}|_A</math> is the maximally mixed state in the space of strings <math>K_A</math>, and <math>{\|\cdot \|}_1</math> is the trace norm. *A protocol implements a <math>(n,\epsilon_{\rm corr},\epsilon_{\rm sec},\ell)</math>-QKD if with <math>n</math> rounds it generates an <math>\epsilon_{\rm corr}</math>-correct and <math>\epsilon_{\rm sec}</math>-secret key of size <math>\ell</math> bits. ==Further Information== The security definition presented here, are proven to be sufficient to guarantee universal composability for standard QKD in [[Quantum Key Distribution #References|[2] ]]. For device-independent quantum key distribution, attacks presented in [[Quantum Key Distribution #References|[3] ]] show that security can be compromised if the same devices are used to implement another instance of the protocol. ==Knowledge Graph== {{graph}} ==References== #[https://doi.org/10.1007/3-540-48329-2_30 Codes for Interactive Authentication] #[https://arxiv.org/abs/1409.3525 PR (2014)] discusses security of various QKD schemes composed in other cryptographic protocols. #[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.010503 BCK (2013)] Analyses device independent QKD <div style='text-align: right;'>''contributed by Bas Dirke, Victoria Lipinska, Gláucia Murta and Jérémy Ribeiro''</div>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Template:Graph
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information