Editing Prepare-and-Send Verifiable Quantum Fully Homomorphic Encryption

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 41: Line 41:
==Hardware Requirements==
==Hardware Requirements==
* Classical HE scheme is required here. The communication can be performed over a classical network with only one quantum node (in case of classical input and output).
* Classical HE scheme is required here. The communication can be performed over a classical network with only one quantum node (in case of classical input and output).
==Knowledge Graph==
{{graph}}


==Properties==
==Properties==
Line 53: Line 49:
* Privacy: this scheme is private if its ciphertexts are indistinguishable under chosen plaintext attack.
* Privacy: this scheme is private if its ciphertexts are indistinguishable under chosen plaintext attack.
* Computational logs are generally classical in nature.
* Computational logs are generally classical in nature.
* The chosen message authentication code MAC = (Tag, Ver) is existentially unforgeable under adaptive chosen message attack from a quantum adversary
* The chosen message authentication code MAC = (Tag, Ver) is existentially unforgeable under adaptive chosen message attacks (EUF-CMA [16]) from a quantum adversary


==Notation==
==Notation==
Line 62: Line 58:
* <math>h</math>: Upper bound on H gate.
* <math>h</math>: Upper bound on H gate.
* <math>k</math>: All keys
* <math>k</math>: All keys
* <math>\pi</math>: Global permutation which are used to encrypt the states, this is a random permutation of 3m bits<math>\pi \in S_{3m}</math>
* <math>\pi</math>: Global permutation which are used to encrypt the states.
* <math>S_{3m}</math>: Permutation group.
* MAC: Message authentication code, MAC = (Tag, Ver)
* MAC: Message authentication code, MAC = (Tag, Ver)
* HE: Classical fully homomorphic public-key encryption scheme
* TC: Trap Code scheme which is a building block for FHE scheme.
* <math>pk_i, sk_i, evk_i</math>: <math>i_{th}</math> homomorphic key set generated from HE.KeyGen(). Public key for encryption, secret key for decryption, evaluation function key, respectively for given k, the security parameter.
* <math>pk_i, sk_i, evk_i</math>: <math>i_{th}</math> homomorphic key set generated from HE.KeyGen(). Public key for encryption, secret key for decryption, evaluation function key, respectively for given k, the security parameter.
* <math>v</math>:
* <math>\mu</math>:
* <math>\tilde{\sigma}</math>: ciphertext
* <math>\tilde{\sigma}</math>: ciphertext
* <math>x, z</math>: Randomly picked bit strings to encrypt with Quantum one time pad. <math>x[i] \in \{0, 1\}^{3m}, z[i] \in \{0, 1\}^{3m}</math>
* <math>\tilde{x}, \tilde{z}</math>: Classical encryptions of the x, z
* <math>\rho_{evk}</math>: evaluation key
* <math>b</math>: Output of the measurement, <math>b \in \{0, 1\}</math>


==Protocol Description==
==Pseudo Code==


'''Stage 1''': Key generation and encryption </br>
'''Stage 1''': Key generation and encryption </br>
Line 95: Line 86:
** <math>\pi_i \xleftarrow[r]{r} S_{3m}</math>
** <math>\pi_i \xleftarrow[r]{r} S_{3m}</math>
** <math>(g_i, \gamma_i^{in}, \gamma_i^{mid}, \gamma_i^{out}) \xleftarrow[]{}</math> TrapTP.GadgetGen<math>(sk_{i-1})</math>
** <math>(g_i, \gamma_i^{in}, \gamma_i^{mid}, \gamma_i^{out}) \xleftarrow[]{}</math> TrapTP.GadgetGen<math>(sk_{i-1})</math>
** <math>\Gamma_i \xleftarrow[]{}</math> MAC.Sign(HE.ENC<math>_{pk_i}(g_i, \pi_i)) \otimes</math> TrapTP.ENC<math>((\pi_i, k, sk_0, ..., sk_t, pk_i), \gamma^{mid}_i \otimes</math> TrapTP.Enc<math>(sk, \gamma^{in}_i, \gamma^{out}_i)</math>
** <math>\Gamma_i \xleftarrow[]{}</math> MAC.Sign(HE.ENC<math>_{pk_i}(g_i, \pi_i)) \otimes</math> TrapTP.ENC<math>((\pi_i, k, sk_0, ..., sk_t, pk_i), \gamma^{mid}_i \otimes</math> TrapTP.Enc<math>(sk, \gamma^{in}_i, \gamma^{out}_i</math>
* <math>keys \xleftarrow[]{}</math> MAC.Sign<math>(evk_0, ..., evk_t, pk_0, ..., pk_t,</math> HE.Enc<math>_{pk_0}(\pi))</math>
* <math>keys \xleftarrow[]{}</math> MAC.Sign<math>(evk_0, ..., evk_t, pk_0, ..., pk_t,</math> HE.Enc<math>_{pk_0}(\pi))</math>
* <math>\rho_{evk} \xleftarrow[]{} (keys, \mu^{P}_0, ..., \mu^{P}_p, \mu^{T}_0, ..., \mu^{T}_t, \mu^{H}_0, ..., \mu^{H}_h, \Gamma_1, ..., \Gamma_t)</math>
* <math>\rho_{evk} \xleftarrow[]{} (keys, \mu^{P}_0, ..., \mu^{P}_p, \mu^{T}_0, ..., \mu^{T}_t, \mu^{H}_0, ..., \mu^{H}_h, \Gamma_1, ..., \Gamma_t)</math>
Line 189: Line 180:


==Further Information==
==Further Information==
==References==
* [https://www.crcpress.com/Introduction-to-Modern-Cryptography/Katz-Lindell/p/book/9781466570269 Introduction to Modern Cryptography]: Message Authentication Code is chosen from here
<div style='text-align: right;'>''*contributed by Rhea Parekh''</div>
<div style='text-align: right;'>''*contributed by Rhea Parekh''</div>
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Quantum Protocol Zoo:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Template used on this page: