Open main menu
Home
Random
Log in
Settings
About Quantum Protocol Zoo
Disclaimers
Quantum Protocol Zoo
Search
Editing
Prepare-and-Send Verifiable Universal Blind Quantum Computation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== '''Protocol for quantum output case''': <br></br> '''Stage 1: '''Client's preparation:</br> '''Input''': Cylindrical brickwork state, <math>|I\rangle</math>. </br> '''Output''': Server: <math>m</math> qubits sequentially. * The client prepares <math>|e\rangle = X^{x1}_1 Z_1(\theta_1) \otimes ... \otimes X^{xn}_n Z_n(\theta_n)|I\rangle</math> using QOTP. * Client randomly chooses <math>t</math>, where <math>t \in D</math>. * For <math>i = n+1, n+2, ....m</math> (non-input qubits): ** if <math>i \in D</math>: *** if <math>i != t</math> then state <math>|0\rangle</math> or <math>|1\rangle</math> is prepared *** if <math>i == t</math> then <math>|+\rangle_{\theta_i}</math> is prepared ** else <math>|+\rangle_{\theta_i}</math> is prepared * <math>\forall l\epsilon\{1,..,n\}</math>, Client sends all qubits to server. '''Stage 2: '''Server's preparation:</br> '''Input''': <math>m</math> qubits sequentially.</br> '''Output''': entangled graph state with a disentangled trap qubit. * Server creates an entangled state from all received qubits using CZ operations according to their indices and creates the cylinder brickwork state. '''Stage 3: '''Interaction and Measurement:</br> '''Input''': <math>\delta_i</math></br> '''Output''': <math>s_i</math> * For <math>i = 1, 2, ... m-n</math> (received qubits): ** Client computes <math>\phi_i</math>. *** if <math>i == t</math>, then <math>\phi_i = 0</math> ** Client randomly selects <math>r_i</math> and generates <math>\theta'_i = \theta_i + r_i</math>. ** Client then computes the angle <math>\delta_i = (-1)^{x_i + s_{f^{-1}(i)}}\phi_i + \sum_{j:i \in N_g(f(j)}\theta'_i + s_i\pi</math> and sends <math>\delta_i</math> to server. ** Server measures <math>i</math> and sends <math>b_i</math> to client. ** Client sets the value <math>s_i = b_i \oplus r_i</math> in <math>s</math> '''Stage 4: '''Verification:</br> '''Input''': Output qubits <math>m-n+1</math> to <math>m</math></br> '''Output''': Verification result * For <math>i = m-n+1, ... m</math> (output qubits): ** Server sends <math>i</math> to client. * Client measures the output trap qubit <math>t</math> (which was disentangled) with angle <math>\delta_t = \phi_t + r_t\pi</math>. ** Client obtains the result <math>b_t</math>. *** If <math>b_t == r_t</math>, then computation is accepted. *** else, computation is rejected.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Close
Loading editor…