Editing
Distributed Ballot Based Protocol
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Protocol Description== *'''Setup phase''': # T prepares an N-qudit ballot state <math>|\Phi\rangle= \dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}|j\rangle ^{\otimes N}</math>. <p>The states <math> |j\rangle, j = 0,...,D-1,</math> form an orthonormal basis for the D-dimensional Hilbert space, and D > N. The k-th qudit of <math>\Phi</math> is <math>V_k</math>'s blank ballot.</p> # T sends to <math>V_k</math> the corresponding blank ballot and two option qudits,for the "yes" and "no" option:<p><math> yes:|\psi(\theta_y)\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{ij\theta_y}|j\rangle</math></p>,<p> no:<math>|\psi(\theta_n)\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{ij\theta_n}|j\rangle</math>.</p> For <math> v\in \{y, n\}</math> we have <math>\theta_v = (2\pi l_v/D) + \delta</math>, where <math>l_v \in \{0,...,D- 1\}</math> and <math>\delta \in [0, 2\pi/D)</math>. Values <math>l_y</math> and <math>\delta</math> are chosen uniformly at random from their domain and <math>l_n</math> is chosen such that <math>N(l_y - l_n \text{ }mod\text{ } D)</math> < D. *'''Casting phase''': #Each <math>V_k</math> appends the corresponding option qudit to the blank ballot and performs a 2-qudit measurement <math> R =\sum^{D-1}_{r=0}rP_r</math> where <math> P_r=\sum_{j=0}^{D-1}|j+r\rangle\langle j+r | \otimes |j\rangle \langle j|.</math><p> According to the result <math>r_k, V_k</math> performs a unitary correction <math>U_{r_k} = I \otimes \sum_{j=0}^{D-1}|j+r_k\rangle \langle j |</math> and sends the 2-qudits ballot and <math>r_k</math> back to T *'''Tally phase''': #The global state of the system is: <math> \dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}\Pi^{N}_{k=1}\alpha_{j,r_k}|j\rangle^{\otimes 2N}</math> where , <math display="block">\alpha_{j,r_k}= \begin{cases} e^{i(D+j-r_k)\theta^{k}_{v}},\text{ }0 \leq j \leq r_k -1,\\ e^{i(j-r_k)\theta^{k}_{v}}\text{ }r_k \leq j \leq D -1 \end{cases} </math><p>For every k, T applies <math> W_k=\sum_{j=0}^{r_k-1}e^{-iD\delta}|j\rangle|\langle j|+\sum_{j=r_k}^{D-1}|j\rangle|\langle j| </math> on one of the qudits in the global state.</p> # By applying the unitary operator <math> \sum_{j=0}^{D-1}e^{-ijN\theta_n}|j\rangle \langle j|</math>on one of the qudits we have <math>|\phi_q\rangle=\dfrac{1}{\sqrt{D}}\sum_{j=0}^{D-1}e^{2\pi ijq/D}|j\rangle^{\otimes 2N}</math> where <math>q=m(l_y-l_n)</math>. with the corresponding measurement, T retrieves q and uses values <math>l_y,l_n</math> to compute m.
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information