Open main menu
Home
Random
Log in
Settings
About Quantum Protocol Zoo
Disclaimers
Quantum Protocol Zoo
Search
Editing
Compressed Sensing Tomography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further Information== * [[Direct Fidelity Estimation]] can be further generalised to work with low-rank states. Thus, one can use compressed sensing tomography to get an estimated density matrix and use Direct fidelity estimation to check whether this state agrees with the true state. This check is guaranteed to be sound, even if the true state is not approximately low rank. Hence this is used to certify the state. * Compressed sensing tomography (as mentioned in [https://arxiv.org/abs/1205.2300 Steven T. Flammia et al]) can also be applied to Quantum Process tomography. This method would have an advantage when the unknown quantum process has a small Kraus rank (only be expressed with a few Kraus operators). This occurs, for example, when the unknown process consists of unitary evolution combined with local noise (acting on each qubit individually, or acting on small subsets of the qubits). The process here can be characterised in <math>m = O(rd^2 </math>log<math> d)</math> settings
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Close
Loading editor…