Editing
Interleaved Randomised Benchmarking
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Procedure Description== '''Step 1''': Standard Randomised Benchmarking '''Output''': Figure of merit: <math>r</math> * For <math>1, 2, ..., M</math>: ** Pick random sequence length <math>m</math> ** For <math>k = 1, 2, ..., K_m</math> sequences: *** For <math>j = 1, 2 ..., m+1</math>: **** If <math>j == m+1</math>, apply inverse operator of previous operations **** else, apply random operation C<math>_i</math> *** Thus, <math>S_{\mathbf{i_m}} = \bigotimes^{m+1}_{j=1} (\Lambda_{(i_j, j)} \circ C_{i_j})</math> and <math>i_{m+1}</math> is uniquely determined by <math>(i_1, ...,i_m)</math> *** Measure survival probability <math>Tr[E_{\psi}S_{\mathbf{i_m}}(\rho_\psi)]</math> ** Estimate average survival probability <math>Tr[E_{\psi}S_{\mathbf{K_m}}(\rho_\psi)]</math> over all <math>K_m</math> sequences, where <math>S_{\mathbf{K_m}} = \frac{1}{K_m}\sum_{i_m} S_{i_m}</math> * Fit the results for the averaged sequence fidelity for all <math>m</math> into the models: ** For gate and time independent error model: *** <math>F_g^{(0)}(m, |\psi\rangle) = A_0p^m + B_0</math> ** For gate and time dependent error model: *** <math>F_g^{(1)}(m, |\psi\rangle) = A_1p^m + B_1 + C_1(m-1)(q-p^2)p^{m-2}</math> * <math>p</math> is extracted from the model and <math>r</math> is estimated, <math>r = \frac{(d-1)(1-p)}{d}</math> '''Step 2''': Estimate gate error of selected Clifford element C '''Input''': C '''Output''': gate error of <math>\Lambda_{C}</math>: <math>r^{est}_C</math> * For <math>1, 2, ..., M</math>: ** Pick random sequence length <math>m</math> ** For <math>k = 1, 2, ..., K_m</math> sequences: *** For <math>j = 1, 2 ..., m+1</math>: **** If <math>j == m+1</math>, apply inverse operator of previous operations **** else If <math>j%2==1</math>, apply random operation C<math>_i</math> **** else, apply C *** Thus <math>\gamma = \Lambda_{i_{m+1}} +</math> C<math>_{i_{m+1}} (\bigotimes^{m+1}_{j=1}[C \circ \Lambda_C \circ \Lambda_{i_j} \circ C_{i_j}])</math> *** Measure the survival probability <math>Tr[E_{\psi}\gamma_{\mathbf{i_m}}(\rho_\psi)]</math> ** Estimate average survival probability <math>Tr[E_{\psi}\gamma_{\mathbf{K_m}}(\rho_\psi)]</math> over all <math>K_m</math> sequences, where <math>\gamma_{\mathbf{K_m}} = \frac{1}{K_m}\sum_{i_m} \gamma_{i_m}</math> * Fit the results for the averaged sequence fidelity for all <math>m</math> into the models, to find <math>p_{\bar{C}}</math>: ** For gate and time independent error model: *** <math>F_\bar{g}^{(0)}(m, |\psi\rangle) = A_0p_{\bar{C}}^m + B_0</math> ** For gate and time dependent error model: *** <math>F_\bar{g}^{(1)}(m, |\psi\rangle) = A_1p_{\bar{C}}^m + B_1 + C_1(m-1)(q-p_{\bar{C}}^2)p_{\bar{C}}^{m-2}</math> * Estimate <math>r^{est}_C = \frac{(d-1)(1-p_{\bar{C}}/p)}{d}</math> * <math>r^{est}_C</math> lies in the range <math>[r^{est}_C-E, r^{est}_C+E]</math>, where <math>E = min (\frac{(d-1)[|p-p_{\bar{C}}/p| + (1-p)]}{d}, \frac{2(d^2-1)(1-p)}{pd^2} + \frac{4\sqrt{1-p}\sqrt{d^2-1}}{p})</math>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information