Open main menu
Home
Random
Log in
Settings
About Quantum Protocol Zoo
Disclaimers
Quantum Protocol Zoo
Search
Editing
Compressed Sensing Tomography
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Procedure Description== '''Input''': copies of unknown quantum state '''Output''': Density matrix of the quantum state, <math>\rho</math> * Consider system of <math>n</math> qubits and dimension <math>d = 2^n</math> * Define <math>\mathcal{P}</math> and select <math>m</math> operators <math>(P_1, ... , P_m)</math> from <math>\mathcal{P}</math> * Make <math>t</math> copies of the unknown quantum state <math>\rho</math> * For <math>i = 1, 2, ..., m</math>: ** For <math>j = 1, 2, ..., t/m</math>: *** Measure <math>P_i</math> on <math>\rho</math> ** Average measurement results to get <math>Tr(P_i\rho)</math> ** Define sampling operator <math>\mathcal{A}, \mathcal{A}(\rho)_i = \sqrt{\frac{d}{m}} Tr(P_i\rho)</math> * Output of measurements is defined as the vector <math>y = \mathcal{A}(\rho) + z</math> * To estimate <math>\rho</math> there are two methods: ** Using trace minimization: *** Choose <math>\lambda</math> such that <math> ||A^*(z)|| \leq \lambda</math>, then <math>||\hat{\rho}_{DS} -\rho||_{tr} \leq C_0r\lambda + C_1||\rho_c||_{tr}</math> *** <math>\hat{\rho}_{DS} =</math> argmin<math>_X ||X||_{tr}</math> such that <math>||\mathcal{A}^*(\mathcal{A}(X) - y)|| \leq \lambda</math> ** Using least-squares linear regression with trace-norm regularization: *** Choose <math>\mu</math> such that <math>||A^*(z)|| \leq \mu</math>, then <math>||\hat{\rho}_{Lasso} -\rho||_{tr} \leq C^{'}_0r\lambda + C^{'}_1||\rho_c||_{tr}</math> *** <math>\hat{\rho}_{Lasso} =</math> argmin<math>_X \frac{1}{2} ||\mathcal{A}(X)-y||_2^2 + \mu||X||_{tr}</math>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Close
Loading editor…