Editing
Certified infinite randomness expansion
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Pseudocode== '''Input''': <math>t</math>, <math>l</math>, <math>C</math>, <math>k</math>, <math>N</math> '''Output''': <math>u</math> * <math>u_0\leftarrow t</math> * <math>i\leftarrow1</math> to <math>k</math>: ** <math>u_i\leftarrow\textrm{clusterExpansion}(D_{i\mod2},u_{i-1},l,C,N)</math> * <math>u\leftarrow u_k</math> With the following subroutines defined: '''clusterExpansion''' '''Input''': <math>D</math>, <math>t</math>, <math>l</math>, <math>C</math>, <math>N</math> '''Output''': <math>u</math> * <math>u\leftarrow VVExpansion(\{D_1,D_2\},t,l,C)</math> * <math>u\leftarrow RUVExpansion(\{D_3,D_4\},u, N)</math> '''VVExpansion''' '''Input''': <math>D</math>, <math>t</math>, <math>l</math>, <math>C</math> '''Output''': <math>u</math> * split <math>t</math> evenly into <math>(t^{(1)},t^{(2)})</math> * <math>\kappa\leftarrow\lceil10\log^2l\rceil</math> * <math>m\leftarrow\lceil Cl\log^2l\rceil</math> * initialise array <math>R,r</math> of length <math>m</math> * For <math>i\leftarrow1</math> to <math>m</math>: ** set <math>R[i]=True</math> with probability <math>1/l</math> (seed with <math>t^{(1)}</math>) * For <math>i\leftarrow1</math> to <math>m</math> do initialise array <math>r_i</math> of length <math>\kappa</math> ** If <math>R[i]</math>: *** For <math>j\leftarrow1</math> to <math>\kappa</math>: **** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math> **** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in basis <math>A_{bases}[0]</math> **** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in basis <math>B_{bases}[0]</math> **** If <math>a\neq b</math>: ***** <math>\textbf{abort}</math> **** <math>r_i[j]\leftarrow(a_j,b_j)</math> ** Else: *** <math>d\leftarrow0</math> *** <math>x_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math> *** <math>y_i\leftarrow</math> draw next random bit from <math>t^{(1)}</math> *** set device <math>D_1</math> to <math>A_{bases}[x_i]</math> *** set device <math>D_2</math> to <math>A_{bases}[0],B_{bases}[0]\}[y_i]</math> *** For <math>j\leftarrow1</math> to <math>\kappa</math>: **** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math> **** <math>a_j\leftarrow</math> measurement results from device <math>D_1</math> in set basis <math>A_{bases}[0]</math> **** <math>b_j\leftarrow</math> measurement results from device <math>D_2</math> in set basis <math>B_{bases}[0]</math> **** <math>r_i[j]\leftarrow(a_j,b_j)</math> **** <math>d\leftarrow d+(a_j\oplus b_j)/\kappa</math> *** If <math>x_j=0</math> and <math>y_j=0</math> and <math>d\neq0</math>: **** <math>\textbf{abort}</math> *** If <math>y_j=1</math> and <math>d>0.16</math>: **** <math>\textbf{abort}</math> *** If <math>x_j=0</math> and <math>y_j=0</math> and (<math>d<0.49</math> or <math>d>0.51</math>): **** <math>\textbf{abort}</math> ** <math>r[i]\leftarrow r_i</math> * flatten <math>r</math> into array of bits * <math>u\leftarrow \textrm{Ext}\Big(r, t^{(2)}, \exp\big(2C|t^{(2)}|^{1/3}\big)\Big)</math> '''RUVExpansion''' '''Input''': <math>D</math>, <math>t</math>, <math>N</math> '''Output''': <math>u</math> * split <math>t</math> evenly into <math>(t^{(1)},t^{(2)})</math> * <math>n\leftarrow\big\lfloor\frac{|t^{(1)}|}{2}\big\rfloor</math> * initialise arrays <math>r</math>, <math>s</math> of length <math>n</math> * <math>w\leftarrow0</math> * For <math>i\leftarrow1</math> to <math>n</math>: ** prepare state <math>|\Psi^+\rangle</math> and share across devices <math>D_1</math> and <math>D_2</math> ** <math>x_i\leftarrow t^{(1)}_i</math> ** <math>y_i\leftarrow t^{(1)}_{i+1}</math> ** <math>a_i\leftarrow</math> measurement result from device <math>D_1</math> in basis <math>A_{bases}[x_i]</math> ** <math>b_i\leftarrow</math> measurement result from device <math>D_2</math> in basis <math>B_{bases}[y_i]</math> ** <math>s[i]\leftarrow(x_i,y_i)</math> ** <math>r[i]\leftarrow(a_i,b_i)</math> ** If <math>x_i\wedge y_i = a_i\otimes b_i</math>: *** <math>w\leftarrow w+1</math> * If <math>w < n\cos^2(\pi/8)-\frac{1}{2\sqrt{2}}\sqrt{n\log{n}}</math>: ** \textbf{abort} * <math>\gamma_1\leftarrow</math> random number in range <math>\{0...n/N-1\}</math> (seed using <math>t^{(2)}</math>) * <math>\gamma_2\leftarrow</math> random number in range <math>\{1...\sqrt{N}-1\}</math> (seed using <math>t^{(2)}</math>) * initialise array <math>u</math> of length <math>\sqrt{N}</math> * For <math>i\leftarrow0</math> to <math>\sqrt{N}</math>: ** <math>u[i]\leftarrow r[\gamma_1n/N+\gamma_2\sqrt{N}+i][0]</math>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information