Editing Quantum Cheque
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 59: | Line 59: | ||
* <math>{|\phi^{(i)}\rangle_{GHZ}}</math> or <math>{\rho^{(i)}_{GHZ}}</math>: <math>n</math> GHZ triplet states where, | * <math>{|\phi^{(i)}\rangle_{GHZ}}</math> or <math>{\rho^{(i)}_{GHZ}}</math>: <math>n</math> GHZ triplet states where, | ||
<div style="text-align: center;"><math>|\phi^{(i)}\rangle_{GHZ} = \rho^{(i)}_{GHZ} = \frac{1}{\sqrt{2}}(|0^{(i)}\rangle_{A_1}|0^{(i)}\rangle_{A_2}|0^{(i)}\rangle_{B} + |1^{(i)}\rangle_{A_1}|1^{(i)}\rangle_{A_2}|1^{(i)}\rangle_{B})</math></div> | <div style="text-align: center;"><math>|\phi^{(i)}\rangle_{GHZ} = \rho^{(i)}_{GHZ} = \frac{1}{\sqrt{2}}(|0^{(i)}\rangle_{A_1}|0^{(i)}\rangle_{A_2}|0^{(i)}\rangle_{B} + |1^{(i)}\rangle_{A_1}|1^{(i)}\rangle_{A_2}|1^{(i)}\rangle_{B})</math></div> | ||
* <math>{\ | * <math>{|\phi^{(i)}\rangle_{A_1}}</math>: First entangled qubit from every GHZ triplet state which is given to account holder. | ||
* <math>{\ | * <math>{|\phi^{(i)}\rangle_{A_2}}</math>: Second entangled qubit from every GHZ triplet state which is given to account holder. | ||
* <math>{\ | * <math>{|\phi^{(i)}\rangle_{B}}</math>: First entangled qubit from every GHZ triplet state which stays with bank. | ||
* <math>r</math>: Generated random number where <math>r \in \{0,1\}^L</math>. | * <math>r</math>: Generated random number where <math>r \in \{0,1\}^L</math>. | ||
* <math>M</math>: Amount of money account holder signs on the cheque. | * <math>M</math>: Amount of money account holder signs on the cheque. | ||
Line 73: | Line 73: | ||
* <math>\chi</math>: Quantum cheque where, | * <math>\chi</math>: Quantum cheque where, | ||
<div style="text-align: center;"><math> | <div style="text-align: center;"><math> | ||
\chi = (id, s, r, \sigma, M, \{{\ | \chi = (id, s, r, \sigma, M, \{{|\phi^{(i)}\rangle_{A_1}}\}_{i=1:n}) | ||
</math></div> | </math></div> | ||
* <math>\kappa</math>: Threshold constant set as a security parameter by the bank in the swap test. | * <math>\kappa</math>: Threshold constant set as a security parameter by the bank in the swap test. | ||
Line 81: | Line 81: | ||
'''Stage 1''': Gen</br> | '''Stage 1''': Gen</br> | ||
'''Output''': Account holder now holds <math>(id, pk, sk, k, s, \{\ | '''Output''': Account holder now holds <math>(id, pk, sk, k, s, \{|\phi^{(i)}\rangle_{A_1}|\phi^{(i)}\rangle_{A_2}\}_{i=1:n})</math> and Bank now holds <math>(id, pk, k, s, {\|\phi^{(i)}\rangle_{B}\}_{i=1:n})}</math> in their private databases. | ||
* Account holder and Bank create <math>k</math>. | * Account holder and Bank create <math>k</math>. | ||
Line 89: | Line 89: | ||
* For <math>i = 1, 2, ...n</math>: | * For <math>i = 1, 2, ...n</math>: | ||
** Bank generates GHZ triple state <math>|\phi^{(i)}\rangle_{GHZ}</math> | ** Bank generates GHZ triple state <math>|\phi^{(i)}\rangle_{GHZ}</math> | ||
** Bank stores <math>\ | ** Bank stores <math>|\phi^{(i)}\rangle_{B}</math> in their private database. | ||
** Bank gives <math>\ | ** Bank gives <math>|\phi^{(i)}\rangle_{A_1}|\phi^{(i)}\rangle_{A_2}</math> to account holder. | ||
* Bank prepares <math>s</math> and shares it with the account holder. | * Bank prepares <math>s</math> and shares it with the account holder. | ||
* For <math>i = 1, 2, ...n</math>: | * For <math>i = 1, 2, ...n</math>: | ||
** Account holder stores <math>\ | ** Account holder stores <math>|\phi^{(i)}\rangle_{A_1}|\phi^{(i)}\rangle_{A_2}</math> privately. | ||
* Account holder now holds <math>(id, pk, sk, k, s, \{\ | * Account holder now holds <math>(id, pk, sk, k, s, \{|\phi^{(i)}\rangle_{A_1}|\phi^{(i)}\rangle_{A_2}\}_{i=1:n})</math> | ||
* Bank now holds <math>(id, pk, k, s, | * Bank now holds <math>(id, pk, k, s, {|\phi^{(i)}\rangle_{B}\}_{i=1:n})}</math> | ||
Line 104: | Line 104: | ||
* For <math>i = 1, 2, ...n</math>: | * For <math>i = 1, 2, ...n</math>: | ||
** Account holder prepares <math>|\psi^{(i)}\rangle = f(k \mid\mid id\mid\mid r\mid\mid M\mid\mid i)</math>. | ** Account holder prepares <math>|\psi^{(i)}\rangle = f(k \mid\mid id\mid\mid r\mid\mid M\mid\mid i)</math>. | ||
** Account holder encodes <math>|\psi^{(i)}\rangle</math> with <math>|\phi^{(i)}\rangle_{GHZ}</math> by combining <math>|\psi^{(i)}\rangle</math> with <math>\ | ** Account holder encodes <math>|\psi^{(i)}\rangle</math> with <math>|\phi^{(i)}\rangle_{GHZ}</math> by combining <math>|\psi^{(i)}\rangle</math> with <math>|\phi^{(i)}\rangle_{A_1}</math> and performing a bell measurement on the two. | ||
<div style="text-align: center;"><math> | <div style="text-align: center;"><math> | ||
|\phi^{(i)}\rangle = |\psi^{(i)}\rangle \otimes |\phi^{(i)}\rangle_{GHZ} | |\phi^{(i)}\rangle = |\psi^{(i)}\rangle \otimes |\phi^{(i)}\rangle_{GHZ} | ||
</math></div> | </math></div> | ||
** Based on the measurement, account holder performs the suitable error correction, by applying the corresponding Pauli matrix, on <math>\ | ** Based on the measurement, account holder performs the suitable error correction, by applying the corresponding Pauli matrix, on <math>|\phi^{(i)}\rangle_{A_1}</math>: | ||
<div style="text-align: center;"><math> | <div style="text-align: center;"><math> | ||
|\Phi^{(+)}\rangle \xrightarrow{} I, | |\Phi^{(+)}\rangle \xrightarrow{} I, | ||
Line 127: | Line 127: | ||
** else: | ** else: | ||
*** Bank continues the verification process. | *** Bank continues the verification process. | ||
* Main branch of the bank performs the measurement in Hadamard basis on its copy of <math>\ | * Main branch of the bank performs the measurement in Hadamard basis on its copy of <math>|\phi^{(i)}\rangle_{B}</math> and obtains outcome <math>|+\rangle</math> or <math>|-\rangle</math>. | ||
* Main branch communicates this result with the local branch. | * Main branch communicates this result with the local branch. | ||
* For <math>i = 1, 2, ...n</math>: | * For <math>i = 1, 2, ...n</math>: | ||
** Based on outcome, branch performs the corresponding Pauli matrix operation on <math>\ | ** Based on outcome, branch performs the corresponding Pauli matrix operation on <math>|\phi^{(i)}\rangle_{A_2}</math> to recover <math>|\Psi^{(i)}\rangle</math> : <math>|+\rangle \xrightarrow{} I, |-\rangle \xrightarrow{} \sigma_z</math> | ||
* For <math>i = 1, 2, ...n</math>: | * For <math>i = 1, 2, ...n</math>: | ||
** Bank computes <math>|\Psi^{,(i)}\rangle </math>, where, | ** Bank computes <math>|\Psi^{,(i)}\rangle </math>, where, |