Open main menu
Home
Random
Log in
Settings
About Quantum Protocol Zoo
Disclaimers
Quantum Protocol Zoo
Search
Editing
Prepare-and-Measure Certified Deletion
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<!-- This is a comment. You can erase them or write below --> <!-- Intro: brief description of the protocol --> This [https://arxiv.org/abs/1910.03551 example protocol] implements the functionality of Quantum Encryption with Certified Deletion using single-qubit state preparation and measurement. This scheme is limited to the single-use, private-key setting. <!--Tags: related pages or category --> ==Requirements== * '''Network Stage: ''' [[:Category:Prepare and Measure Network Stage| Prepare and Measure]] ==Outline== The scheme consists of 5 circuits- * ''Key'': This circuit generates the key used in later stages * ''Enc'': This circuit encrypts the message using the key * ''Dec'': This circuit decrypts the ciphertext using the key and generates an error flag bit * ''Del'': This circuit deletes the ciphertext state and generates a deletion certificate * ''Ver'': This circuit verifies the validity of the deletion certificate using the key <!-- A non-mathematical detailed outline which provides a rough idea of the concerned protocol --> ==Notation== <!-- Connects the non-mathematical outline with further sections. --> * For any string <math>x \in \{0,1\}^n</math> and set <math>\mathcal{I} \subseteq [n], x|_\mathcal{I}</math> denotes the string <math>x</math> restricted to the bits indexed by <math>\mathcal{I}</math> * For <math>x,\theta \in \{0,1\}^n, |x^\theta\rangle = H^\theta|x\rangle = H^{\theta_1}|x_1\rangle \otimes H^{\theta_2}|x_2\rangle \otimes ... \otimes H^{\theta_n}|x_n\rangle</math> * <math>\mathcal{Q} := \mathbb{C}^2</math> denotes the state space of a single qubit,<math>\mathcal{Q}(n) := \mathcal{Q}^{\otimes n}</math> * <math>\mathcal{D(H)}</math> denotes the set of density operators on a Hilbert space <math>\mathcal{H}</math> * <math>\lambda</math>: Security parameter * <math>n</math>: Length, in bits, of the message * <math>\omega : \{0,1\} \rightarrow \mathbb{N}</math> : Hamming weight function * <math>m = \kappa(\lambda)</math>: Total number of qubits sent from encrypting party to decrypting party * <math>k</math>: Length, in bits, of the string used for verification of deletion * <math>s = m - k</math>: Length, in bits, of the string used for extracting randomness * <math>\tau = \tau(\lambda)</math>: Length, in bits, of error correction hash * <math>\mu = \mu(\lambda)</math>: Length, in bits, of error syndrome * <math>\theta</math>: Basis in which the encrypting party prepare her quantum state * <math>\delta</math>: Threshold error rate for the verification test * <math>\Theta</math>: Set of possible bases from which \theta is chosen * <math>\mathfrak{H}_{pa}</math>: Universal<math>_2</math> family of hash functions used in the privacy amplification scheme * <math>\mathfrak{H}_{ec}</math>: Universal<math>_2</math> family of hash functions used in the error correction scheme * <math>H_{pa}</math>: Hash function used in the privacy amplification scheme * <math>H_{ec}</math>: Hash function used in the error correction scheme * <math>synd</math>: Function that computes the error syndrome * <math>corr</math>: Function that computes the corrected string <!--==Knowledge Graph== --> <!-- Add this part if the protocol is already in the graph --> <!-- {{graph}} --> ==Protocol Description== ===Circuit 1: ''Key''=== The key generation circuit '''Input ''': None '''Output''': A key state <math>\rho \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> # Sample <math>\theta \gets \Theta</math> # Sample <math> r|_{\tilde{\mathcal{I}}} \gets \{0,1\}^k</math> where <math>\tilde{\mathcal{I}} = \{i \in [m] | \theta_i = 1\}</math> # Sample <math>u \gets \{0,1\}^n</math> # Sample <math>d \gets \{0,1\}^\mu</math> # Sample <math>e \gets \{0,1\}^\tau</math> # Sample <math>H_{pa} \gets \mathfrak{H}_{pa}</math> # Sample <math>H_{ec} \gets \mathfrak{H}_{ec}</math> # Output <math>\rho = | r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| </math> ===Circuit 2: ''Enc''=== The encryption circuit '''Input :''' A plaintext state <math>|\mathrm{msg}\rangle\langle\mathrm{msg}|</math> and a key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> '''Output:''' A ciphertext state <math>\rho \in \mathcal{D}(\mathcal{Q}(m+n+\tau+\mu))</math> # Sample <math>r|_\mathcal{I} \gets \{0,1\}^s</math> where <math>\mathcal{I} = \{i \in [m]| \theta_i = 0 \}</math> # Compute <math>x = H_{pa}(r|_\mathcal{I})</math> where <math>\mathcal{I} = \{i \in [m]| \theta_i = 0 \}</math> # Compute <math>p = H_{ec}(r|_\mathcal{I}) \oplus d</math> # Compute <math>q = \mathrm{synd}(r|_\mathcal{I})\oplus e</math> # Output <math>\rho = |r^\theta\rangle\langle r^\theta |\otimes|\mathrm{msg}\oplus x \oplus u,p,q\rangle\langle \mathrm{msg}\oplus x \oplus u,p,q |</math> ===Circuit 3: ''Dec''=== The decryption circuit '''Input :''' A key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> and a ciphertext <math>\rho \otimes |c,p,q\rangle\langle c,p,q| \in \mathcal{D}(\mathcal{Q}(m + n + \mu + \tau)) </math> '''Output:''' A plaintext state <math>\sigma \in \mathcal{D}(\mathcal{Q}(n))</math> and an error flag <math>\gamma \in \mathcal{D}(\mathcal{Q})</math> # Compute <math>\rho^\prime = \mathrm{H}^\theta \rho \mathrm{H}^\theta</math> # Measure <math>\rho^\prime</math> in the computational basis. Call the result <math>r</math> # Compute <math>r^\prime = \mathrm{corr}(r|_\mathcal{I},q\oplus e)</math> where <math>\mathcal{I} = \{i \in [m]|\theta_i =0\}</math> # Compute <math>p^\prime = H_{ec}(r^\prime) \oplus d </math> # If <math>p \neq p^\prime</math>, then set <math>\gamma = |0\rangle\langle 0|</math>. Else, set <math>\gamma = |1\rangle\langle 1|</math> # Compute <math>x^\prime = H_{pa}(r^\prime)</math> # Output <math>\rho \otimes \gamma = |c\oplus x^\prime \oplus u \rangle \langle c\oplus x^\prime \oplus u| \otimes \gamma </math> ===Circuit 4: ''Del''=== The deletion circuit '''Input :''' A ciphertext <math>\rho \otimes |c,p,q\rangle\langle c,p,q| \in \mathcal{D}(\mathcal{Q}(m+n+\mu+\tau))</math> '''Output:''' A certificate string <math>\sigma \in \mathcal{D}(\mathcal{Q}(m))</math> # Measure <math>\rho</math> in the Hadamard basis. Call the output y. # Output <math>\sigma = |y\rangle\langle y|</math> ===Circuit 5: ''Ver''=== The verification circuit '''Input :''' A key state <math>| r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}\rangle \langle r|_\tilde{\mathcal{I}},\theta,u,d,e,H_{pa},H_{ec}| \in \mathcal{D}(\mathcal{Q}(k+m+n+\mu+\tau)\otimes\mathfrak{H}_{pa}\otimes\mathfrak{H}_{ec}</math> and a certificate string <math>|y\rangle\langle y| \in \mathcal{D}(\mathcal{Q}(m))</math> '''Output:''' A bit # Compute <math>\hat y^\prime = \hat y|_\mathcal{\tilde{I}}</math> where <math> \mathcal{\tilde{I}} = \{i \in [m] | \theta_i = 1 \}</math> # Compute <math>q = r|_\tilde{\mathcal{I}}</math> # If <math>\omega(q\oplus \hat y^\prime) < k\delta</math>, output <math>1</math>. Else, output <math>0</math>. <!-- Mathematical step-wise protocol algorithm helpful to write a subroutine. --> ==Properties== <!-- important information on the protocol: parameters (threshold values), security claim, success probability... --> This scheme has the following properties: *'''Correctness''': The scheme includes syndrome and correction functions and is thus robust against a certain amount of noise, i.e. below a certain noise threshold, the decryption circuit outputs the original message with high probability. *'''Ciphertext Indistinguishability''': This notion implies that an adversary, given a ciphertext, cannot discern whether the original plaintext was a known message or a dummy plaintext <math>0^n</math> *'''Certified Deletion Security''': After producing a valid deletion certificate, the adversary cannot obtain the original message, even if the key is leaked (after deletion). ==References== * The scheme along with its formal security definitions and their proofs can be found in [https://arxiv.org/abs/1910.03551 Broadbent & Islam (2019)] <div style='text-align: right;'>''*contributed by Chirag Wadhwa''</div>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)