Editing
Quantum Gate Set Tomography
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Procedure Description== '''Output''': Gate set, <math>G</math> * Initialize system to <math>|\rho\rangle</math> * For <math>i = 1, 2, ..., N</math>: ** For <math>j = 1, 2, ..., N</math>: *** For <math>k = 1, 2, ..., K</math>: **** For <math>r = 1, 2, ..., n</math> ***** Apply gate sequence <math>F_i \circ G_k \circ F_j</math> ***** Measure with POVM <math>E</math>, get <math>n_r = 1</math> or <math>n_r = 0</math> **** <math>m_{ijk} = \sum_{r=1}^{n} \frac{n_r}{n}</math> **** <math>(\tilde{G}_k)_{ij} = p_{ijk} = m_{ijk} = \langle E|F_iG_kF_j|\rho\rangle</math> **** if <math>k==0</math> (null gate), <math>g_{ij} = \langle E|F_iF_j|\rho\rangle</math> ** <math>|\tilde{\rho}\rangle_i = \langle E|F_i|\rho\rangle</math> ** <math>B_{ij} = \langle i |F_j |\rho\rangle</math> * For Linear inversion: ** Check that the Gram matrix <math>g_{ij}</math> is non singular, so that it may be inverted ** For the gate set, the estimate is <math>|\hat{\rho}\rangle = g^{-1}|\tilde{\rho}\rangle, \langle \hat{E}| = \langle \tilde{E} |, \hat{G_k} = g^{-1} \tilde{G}_k</math> ** Apply gauge optimization, by minimizing: <div style="text-align: center;"><math>\hat{B}^* = argmin_{\hat{B}}\sum^{K+1}_{k=1}Tr\{(\hat{G}_k - \hat{B}^{-1}T_k\hat{B})^T(\hat{G}_k - \hat{B}^{-1}T_k\hat{B})\} </math></div> ** Final gate set is: <math>\hat{G}_k^{*} = \hat{B}^*\hat{G}_k(\hat{B}^*)^{-1}, |\hat{p}^*\rangle = \hat{B}^*|\hat{p}\rangle, \langle \hat{E}^*| = \langle \hat{E}|(\hat{B}^*)^{-1}</math> * For Maximum Likelihood Estimation: ** <math>\hat{p}_{ijk} = \langle \hat{E}(\vec{t})|\hat{F}_i(\vec{t})\hat{G}_k(\vec{t})\hat{F}_j(\vec{t})|\hat{\rho}(\vec{t})\rangle</math> ** Find the set of parameters <math>\vec{t}</math> where <math>l(\hat{G})</math> is minimized. <div style="text-align: center;">Minimize: <math> l(\hat{G}) = \sum_{ijk} (m_{ijk} - \hat{p}_{ijk}(\vec{t}))^2 / \sigma^2_{ijk} </math></div> ** Minimize the above function with two different commonly used types of parameterisation of gates: *** Pauli Process Matrix Optimization problem: <div style="text-align: center;">Minimize: <math> l(\hat{G}) = \sum_{ijk} (m_{ijk} - \sum_{mnrstu}(\chi_{F_i})_{tu} (\chi_{G_k})_{rs} (\chi_{F_j})_{mn} Tr\{EP_t P_r P_m \rho P_n P_s P_u\} )^2 / \sigma^2_{ijk} </math></div> <div style="text-align: center;">Subject to: <math> \sum_{mn}(\chi_G)_{mn}Tr\{P_mP_rP_n\} - \delta_{0r} = 0, (r = 1, .. , d^2), \forall G \in Gateset </math></div> <div style="text-align: center;"><math> Tr\{\rho\} = 1 </math></div> <div style="text-align: center;"><math> 1 - E \geqslant 0 </math></div> *** Pauli Transfer Matrix Representation <div style="text-align: center;"> Minimize: <math> l(\hat{G}) = \sum_{ijk} (m_{ijk} - \langle \hat{E}(\vec{t})|\hat{R}_{F_i}(\vec{t})\hat{R}_{G_k}(\vec{t})\hat{R}_{F_j}(\vec{t})|\hat{\rho}(\vec{t})\rangle )^2 / \sigma^2_{ijk} </math></div> <div style="text-align: center;">Subject to: <math> \rho_G = \frac{1}{d^2} \sum_{i,j=1}^{d^2}(R_G)_{ij}P^T_G \otimes P_i \geqslant 0, \forall G \in Gateset </math></div> <div style="text-align: center;"><math> (R_G)_{0i} = \delta_{0i}, \forall G \in Gateset </math></div> <div style="text-align: center;"><math> (R_G)_{ij} \in [-1, 1], \forall G, i, j </math></div> <div style="text-align: center;"><math> Tr\{\rho\} = 1 </math></div> <div style="text-align: center;"><math> 1 - E \geqslant 0 </math></div>
Summary:
Please note that all contributions to Quantum Protocol Zoo may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Quantum Protocol Zoo:Copyrights
for details).
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Main page
News
Protocol Library
Certification Library
Nodal Subroutines
Codes Repository
Knowledge Graphs
Submissions
Categories
Supplementary Information
Recent Changes
Contact us
Help
Tools
What links here
Related changes
Special pages
Page information